Patents by Inventor Eric Piquette

Eric Piquette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10903384
    Abstract: A multi-color light detector includes a first photodiode. The light detector further includes a second photodiode stacked on the first photodiode and defining a via. The light detector further includes a first conductor extending through the via, contacting the first photodiode, and designed to transmit a first signal corresponding to a first light detected by the first photodiode. The light detector further includes a second conductor contacting the second photodiode and designed to transmit a second signal corresponding to a second light detected by the second photodiode.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 26, 2021
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Eric Piquette, Michael Carmody, Peter Dreiske
  • Publication number: 20200388718
    Abstract: A multi-color light detector includes a first photodiode. The light detector further includes a second photodiode stacked on the first photodiode and defining a via. The light detector further includes a first conductor extending through the via, contacting the first photodiode, and designed to transmit a first signal corresponding to a first light detected by the first photodiode. The light detector further includes a second conductor contacting the second photodiode and designed to transmit a second signal corresponding to a second light detected by the second photodiode.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 10, 2020
    Inventors: Eric Piquette, Michael Carmody, Peter Dreiske
  • Patent number: 10297704
    Abstract: Methods, systems, and apparatus that filters noise within a signal collected by a detector assembly. The detector assembly includes a first semiconductor layer of a first type configured to receive a photon. The detector assembly includes a second semiconductor layer of a second type. The second semiconductor layer is formed above the first semiconductor layer. The first semiconductor layer and the second semiconductor layer are configured to collect a signal. The detector assembly includes an interface layer including an insulator portion for filtering noise. The interface layer is formed on the second semiconductor layer. The detector assembly includes a metal contact layer formed on the interface layer. The interface layer is configured to capacitively couple the first semiconductor layer and second semiconductor layer with the metal contact layer.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: May 21, 2019
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventor: Eric Piquette
  • Publication number: 20170271530
    Abstract: Methods, systems, and apparatus that filters noise within a signal collected by a detector assembly. The detector assembly includes a first semiconductor layer of a first type configured to receive a photon. The detector assembly includes a second semiconductor layer of a second type. The second semiconductor layer is formed above the first semiconductor layer. The first semiconductor layer and the second semiconductor layer are configured to collect a signal. The detector assembly includes an interface layer including an insulator portion for filtering noise. The interface layer is formed on the second semiconductor layer. The detector assembly includes a metal contact layer formed on the interface layer. The interface layer is configured to capacitively couple the first semiconductor layer and second semiconductor layer with the metal contact layer.
    Type: Application
    Filed: September 19, 2016
    Publication date: September 21, 2017
    Inventor: Eric Piquette
  • Patent number: 9553116
    Abstract: A substrate-removed, surface passivated, and anti-reflective (AR) coated detector assembly is provided. The assembly has an AR coating or passivation layer which includes a wide bandgap thin-film dielectric/passivation layer integrated therein. The wide bandgap thin-film dielectric/passivation layer is positioned proximal to a back interface of a substrate-removed detector assembly. A method of manufacturing the detector assembly includes etching a backside of a partially-removed-substrate detector assembly to obtain an etched detector assembly removed from a substrate. A wide bandgap layer is deposited, in a vacuum chamber, on the etched detector assembly without utilizing an adhesive layer. Additional anti-reflective coating layers are deposited, in the same vacuum chamber, on the wide bandgap layer to form an anti-reflective coating layer with the wide bandgap layer integrated therein.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: January 24, 2017
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Donald L. Lee, Eric Piquette, Majid Zandian, Paul H. Kobrin, Haluk Sankur
  • Publication number: 20150357367
    Abstract: A substrate-removed, surface passivated, and anti-reflective (AR) coated detector assembly is provided. The assembly has an AR coating or passivation layer which includes a wide bandgap thin-film dielectric/passivation layer integrated therein. The wide bandgap thin-film dielectric/passivation layer is positioned proximal to a back interface of a substrate-removed detector assembly. A method of manufacturing the detector assembly includes etching a backside of a partially-removed-substrate detector assembly to obtain an etched detector assembly removed from a substrate. A wide bandgap layer is deposited, in a vacuum chamber, on the etched detector assembly without utilizing an adhesive layer. Additional anti-reflective coating layers are deposited, in the same vacuum chamber, on the wide bandgap layer to form an anti-reflective coating layer with the wide bandgap layer integrated therein.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 10, 2015
    Inventors: Donald L. Lee, Eric Piquette, Majid Zandian, Paul H. Kobrin, Haluk Sankur
  • Publication number: 20070034898
    Abstract: The present invention provides a heterojunction photodiode which includes a pn or Schottky-barrier junction formed in a first material region having a bandgap energy Eg1. When reverse-biased, the junction creates a depletion region which expands towards a second material region having a bandgap energy Eg2 which is less than Eg1. This facilitates signal photocurrent generated in the second region to flow efficiently through the junction in the first region while minimizing the process-related dark currents and associated noise due to near junction defects and imperfect surfaces which typically reduce photodiode device performance. The heterojunction photodiode can be included in an imaging system which includes an array of junctions to form an imager.
    Type: Application
    Filed: January 6, 2005
    Publication date: February 15, 2007
    Inventors: William Tennant, Eric Piquette, Donald Lee, Mason Thomas, Majid Zandian