Patents by Inventor ERIC POP

ERIC POP has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908690
    Abstract: In certain examples, methods and semiconductor structures are directed to multilayered structures including TMD (transition metal dichalcogenide material or TMD-like material and a polymer-based layer which is characterized as exhibiting flexibility. A first layer including a TMD-based material (e.g., an atomic-thick layer including TMD) or TMD-like material is provided or grown on a surface which in certain instances may be a rigid platform or substrate. A plurality of electrodes are provided on or as part of the first layer, and another layer or film including polymer is applied to cover the first layer and the electrodes. The other layer is integrated with the TMD material or TMD-like material and the first layer, and the other layer provides a flexible substrate such as when released from the exemplary rigid platform or substrate.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: February 20, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Alwin S. Daus, Sam Vaziri, Eric Pop
  • Publication number: 20220246430
    Abstract: In certain examples, methods and semiconductor structures are directed to multilayered structures including TMD (transition metal dichalcogenide material or TMD-like material and a polymer-based layer which is characterized as exhibiting flexibility. A first layer including a TMD-based material (e.g., an atomic-thick layer including TMD) or TMD-like material is provided or grown on a surface which in certain instances may be a rigid platform or substrate. A plurality of electrodes are provided on or as part of the first layer, and another layer or film including polymer is applied to cover the first layer and the electrodes. The other layer is integrated with the TMD material or TMD-like material and the first layer, and the other layer provides a flexible substrate such as when released from the exemplary rigid platform or substrate.
    Type: Application
    Filed: June 19, 2020
    Publication date: August 4, 2022
    Inventors: Alwin S. Daus, Sam Vaziri, Eric Pop
  • Publication number: 20220115590
    Abstract: A low-power phase-change memory (PCM) technology with interfacial thermoelectric heating (TEH) enhancement is provided. Embodiments described herein leverage a substantial, positive thermoelectric coefficient in PCM materials to generate additional heating or cooling at an interface with another material, enabling memory switching with a large reduction in current and power. Interfacial thermoelectric engineering is applied to a PCM cell using a special class of thermoelectric materials with large negative Seebeck coefficients (e.g., bismuth telluride (Bi2Te3), lead telluride (PbTe), lanthanum telluride (La3Te4), indium selenide (InSe), silicon-germanium (Si0.8Ge0.2)) to induce efficient heating at significantly lowered power and current.
    Type: Application
    Filed: October 11, 2021
    Publication date: April 14, 2022
    Inventors: Asir Intisar Khan, Eric Pop, Raisul Islam, H.-S. Philip Wong, Kenneth E. Goodson, Mehdi Asheghi, Heungdong Kwon
  • Publication number: 20210249331
    Abstract: Provided are high quality metal-nitride, such as aluminum nitride (AlN), films for heat dissipation and heat spreading applications, methods of preparing the same, and deposition of high thermal conductivity heat spreading layers for use in RF devices such as power amplifiers, high electron mobility transistors, etc. Aspects of the inventive concept can be used to enable heterogeneously integrated compound semiconductor on silicon devices or can be used in in non-RF applications as the power densities of these highly scaled microelectronic devices continues to increase.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 12, 2021
    Inventors: Scott Ueda, Aaron McLeod, Andrew Kummel, Mike Burkland, Eduardo M. Chumbes, Thomas E. Kazior, Eric Pop, Michelle Chen, Chris Perez, Mark Rodwell
  • Patent number: 9583702
    Abstract: Provided is a phase change memory device including a graphene layer inserted between a lower electrode into which heat flows and a phase change material layer, to prevent the heat from being diffused to an outside so as to efficiently transfer the heat to the phase change material layer, and a method of fabricating the phase change memory device. The phase change memory device includes a lower electrode; an insulating layer formed to enclose the lower electrode; a graphene layer formed on the lower electrode; a phase change material layer formed on the graphene layer and the insulating layer; and an upper electrode formed on the phase change material layer. Since a phase of the phase change material layer is changed at a small amount of driving current, the phase change memory device is fabricated to have a high driving speed and a high integration.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: February 28, 2017
    Assignees: Samsung Electronics Co., Ltd., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yongsung Kim, Chiyui Ahn, Aditya Sood, Eric Pop, H.-S. Philip Wong, Kenneth E. Goodson, Scott Fong, Seunghyun Lee, Christopher M. Neumann, Mehdi Asheghi
  • Publication number: 20160276585
    Abstract: Provided is a phase change memory device including a graphene layer inserted between a lower electrode into which heat flows and a phase change material layer, to prevent the heat from being diffused to an outside so as to efficiently transfer the heat to the phase change material layer, and a method of fabricating the phase change memory device. The phase change memory device includes a lower electrode; an insulating layer formed to enclose the lower electrode; a graphene layer formed on the lower electrode; a phase change material layer formed on the graphene layer and the insulating layer; and an upper electrode formed on the phase change material layer. Since a phase of the phase change material layer is changed at a small amount of driving current, the phase change memory device is fabricated to have a high driving speed and a high integration.
    Type: Application
    Filed: January 29, 2016
    Publication date: September 22, 2016
    Inventors: Yongsung Kim, Chiyui Ahn, Aditya Sood, Eric Pop, H.S. Philip Wong, Kenneth E. Goodson, Scott Fong, Seunghyun Lee, Christopher M. Neumann, Mehdi Asheghi
  • Patent number: 9412442
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a method for depositing a first material that substantially covers a nanoheater, applying a signal to the nanoheater to remove a first portion of the first material covering the nanoheater to form a trench aligned with the nanoheater, depositing a second material in the trench, and removing a second portion of the first material and a portion of the second material to form a nanowire comprising a remaining portion of the second material covering the nanoheater along the trench. Additional embodiments are disclosed.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: August 9, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Eric Pop, Feng Xiong, Myung-Ho Bae
  • Patent number: 9324422
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a device including a nanoelectrode having a gap, and a resistive change material located in the gap, wherein an application of a voltage potential across first and second terminals of the nanoelectrode causes the resistive change material to modify at least one non-volatile memory state of the resistive change material. Additional embodiments are disclosed.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: April 26, 2016
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Eric Pop, Feng Xiong, Albert D. Liao
  • Publication number: 20160111149
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a device including a nanoelectrode having a gap, and a resistive change material located in the gap, wherein an application of a voltage potential across first and second terminals of the nanoelectrode causes the resistive change material to modify at least one non-volatile memory state of the resistive change material. Additional embodiments are disclosed.
    Type: Application
    Filed: April 18, 2012
    Publication date: April 21, 2016
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Eric Pop, Feng Xiong, Albert D. Liao
  • Patent number: 8860004
    Abstract: A device that incorporates teachings of the present disclosure may include, for example, a memory array having a first array of nanotubes, a second array of nanotubes, and a state changing material located between the first and second array of nanotubes. Other embodiments are disclosed.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: October 14, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Eric Pop
  • Publication number: 20140042381
    Abstract: A device that incorporates teachings of the present disclosure may include, for example, a memory array having a first array of nanotubes, a second array of nanotubes, and a state changing material located between the first and second array of nanotubes. Other embodiments are disclosed.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventor: Eric Pop
  • Patent number: 8586961
    Abstract: A device that incorporates teachings of the present disclosure may include, for example, a memory array having a first array of nanotubes, a second array of nanotubes, and a resistive change material located between the first and second array of nanotubes. Other embodiments are disclosed.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: November 19, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Eric Pop
  • Publication number: 20130285001
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a method for depositing a first material that substantially covers a nanoheater, applying a signal to the nanoheater to remove a first portion of the first material covering the nanoheater to form a trench aligned with the nanoheater, depositing a second material in the trench, and removing a second portion of the first material and a portion of the second material to form a nanowire comprising a remaining portion of the second material covering the nanoheater along the trench. Additional embodiments are disclosed.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Eric Pop, Feng Xiong, Myung-Ho Bae
  • Publication number: 20130279245
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a device including a nanoelectrode having a gap, and a resistive change material located in the gap, wherein an application of a voltage potential across first and second terminals of the nanoelectrode causes the resistive change material to modify at least one non-volatile memory state of the resistive change material. Additional embodiments are disclosed.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Eric Pop, Feng Xiong, Albert D. Liao
  • Publication number: 20090278111
    Abstract: A device that incorporates teachings of the present disclosure may include, for example, a memory array having a first array of nanotubes, a second array of nanotubes, and a resistive change material located between the first and second array of nanotubes. Other embodiments are disclosed.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 12, 2009
    Applicant: THE BOARD OF TRUSTTES OF THE UNIVERSITY OF ILLINOIS
    Inventor: ERIC POP