Patents by Inventor Eric R. Cobb

Eric R. Cobb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10262833
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 16, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Publication number: 20180090297
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 29, 2018
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Patent number: 9859098
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: January 2, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Publication number: 20170178857
    Abstract: An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Scott C. Holden, Bon-Woong Koo, Brant S. Binns, Richard M. White, Kenneth L. Starks, Eric R. Cobb
  • Patent number: 9093372
    Abstract: Techniques for processing a substrate are disclosed. In one exemplary embodiment, the technique may be realized with an ion implantation system for processing a substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 28, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Richard M. White, Svetlana B. Radovanov, Kevin M. Daniels, Eric R. Cobb, David W. Pitman
  • Publication number: 20150179455
    Abstract: Techniques for processing a substrate are disclosed. In one exemplary embodiment, the technique may be realized as a method for processing a substrate, the method comprising: ionizing first material and second material in an ion source chamber of an ion source, the first material being boron (B) containing material, the second material being one of phosphorous (P) containing material and arsenic (As) containing material; generating first ions containing B and second ions containing one of P and As; and extracting the first and second ions from the ion source chamber and directing the first and second ions toward the substrate.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 25, 2015
    Inventors: Bon-Woong Koo, Richard M. White, Svetlana B. Radovanov, Kevin M. Daniels, Eric R. Cobb, David W. Pitman
  • Patent number: 9064795
    Abstract: Techniques for processing a substrate are disclosed. In one exemplary embodiment, the technique may be realized as a method for processing a substrate, the method comprising: ionizing first material and second material in an ion source chamber of an ion source, the first material being boron (B) containing material, the second material being one of phosphorous (P) containing material and arsenic (As) containing material; generating first ions containing B and second ions containing one of P and As; and extracting the first and second ions from the ion source chamber and directing the first and second ions toward the substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 23, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Richard M. White, Svetlana B. Radovanov, Kevin M. Daniels, Eric R. Cobb, David W. Pitman
  • Publication number: 20150034837
    Abstract: An ion source includes an ion source chamber, a gas source to provide a fluorine-containing gas species to the ion source chamber and a cathode disposed in the ion source chamber configured to emit electrons to generate a plasma within the ion source chamber. The ion source chamber and cathode are comprised of a refractory metal. A phosphide insert is disposed within the ion source chamber and presents an exposed surface area that is configured to generate gas phase phosphorous species when the plasma is present in the ion source chamber, wherein the phosphide component is one of boron phosphide, tungsten phosphide, aluminum phosphide, nickel phosphide, calcium phosphide and indium phosphide.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, William T. Levay, Richard M. White, Eric R. Cobb
  • Patent number: 8466431
    Abstract: Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: June 18, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James S. Buff, Svetlana Radovanov, Bon-Woong Koo, Wilhelm Platow, Frank Sinclair, D. Jeffrey Lischer, Craig R. Chaney, Steven Borichevsky, Eric R. Cobb, Mayur Jagtap, Kenneth H. Purser, Victor Benveniste, Shardul S. Patel
  • Patent number: 8263944
    Abstract: In an ion implanter, an inert gas is directed at a cathode assembly near an ion source chamber via a supply tube. The inert gas is provided with a localized directional flow toward the cathode assembly to reduce unwanted concentrations of cleaning or dopant gases introduced into the ion source chamber, thereby reducing the effects of unwanted filament growth in the cathode assembly and extending the manufacturing life of the ion source.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John Bon-Woong Koo, David J. Twiss, Chris Campbell, Frank Sinclair, Alexander S. Perel, Craig R. Chaney, Wilhelm P. Platow, Eric R. Cobb
  • Patent number: 7888662
    Abstract: In a cleaning process for an ion source chamber, an electrode positioned outside of the ion source chamber includes a suppression plug. When the cleaning gas is introduced intothe source chamber, the suppression plug may engage an extraction aperture of the source chamber to adjust the gas pressure within the chamber to enhance chamber cleaning via. plasma-enhanced chemical reaction. The gas conductance between the source chamber aperture and the suppression plug can be adjusted during the cleaning process to provide optimum cleaning conditions and to exhaust unwanted deposits.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 15, 2011
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Costel Biloiu, Craig R. Chaney, Eric R. Cobb, Bon-Woong Koo, Wilhelm P. Platow
  • Patent number: 7887034
    Abstract: A method and clamp system for use on an ion implanter system for aligning a cathode and filament relative to one another in-situ are disclosed. The invention includes a clamp system having a clamp including a first clamp member separably coupled to a second clamp member, and an opening to a mount portion of one of the cathode and the filament in at least one of the clamp members. Each clamp member includes a surface to engage a mount portion of one of the cathode and the filament. The opening is adapted to receive a positioning tool to position the cathode and the filament relative to one another by moving the mount portion when the clamp is released. The mount portion may include a tool receiving member to facilitate accurate positioning.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: February 15, 2011
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stephen Krause, Eric R. Cobb, Russell Low
  • Publication number: 20100200768
    Abstract: Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 12, 2010
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: JAMES BUFF, SVETLANA RADOVANOV, BON-WOONG KOO, WILHELM PLATOW, FRANK SINCLAIR, JEFFREY D. LISCHER, CRAIG CHANEY, STEVEN BORICHEVSKY, ERIC R. COBB, MAYUR JAGTAP, KENNETH PURSER, VICTOR M. BENVENISTE, SHARDUL S. PATEL
  • Publication number: 20100155619
    Abstract: In an ion implanter, an inert gas is directed at a cathode assembly near an ion source chamber via a supply tube. The inert gas is provided with a localized directional flow toward the cathode assembly to reduce unwanted concentrations of cleaning or dopant gases introduced into the ion source chamber, thereby reducing the effects of unwanted filament growth in the cathode assembly and extending the manufacturing life of the ion source.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: Varian Semiconductor Equipment Associates Inc.
    Inventors: John Bon-Woong Koo, David J. Twiss, Chris Campbell, Frank Sinclair, Alexander S. Perel, Craig R. Chaney, Wilhelm P. Platow, Eric R. Cobb
  • Patent number: 7655932
    Abstract: Techniques for providing ion source feed materials are disclosed. In one particular exemplary embodiment, the techniques may be realized as a container for supplying an ion source feed material. The container may comprise an internal cavity to be pre-filled with an ion source feed material. The container may also comprise an outer body configured to be removably loaded into a corresponding housing that is coupled to an ion source chamber via a nozzle assembly. The container may further comprise an outlet to seal in the pre-filled ion source feed material, the outlet being further configured to engage with the nozzle assembly to establish a flow path between the internal cavity and the ion source chamber. The container may be configured to be a disposable component.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: February 2, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher R. Hatem, Craig R. Chaney, Eric R. Cobb, Joseph C. Olson, Chris Campbell
  • Publication number: 20090314951
    Abstract: In a cleaning process for an ion source chamber, an electrode positioned outside of the ion source chamber includes a suppression plug. When the cleaning gas is introduced into the source chamber, the suppression plug may engage an extraction aperture of the source chamber to adjust the gas pressure within the chamber to enhance chamber cleaning via. plasma-enhanced chemical reaction. The gas conductance between the source chamber aperture and the suppression plug can be adjusted during the cleaning process to provide optimum cleaning conditions and to exhaust unwanted deposits.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Costel Biloiu, Craig R. Chaney, Eric R. Cobb, Bon-Woong Koo, Wilhelm P. Platow
  • Patent number: 7491947
    Abstract: A technique improving performance and lifetime of indirectly heated cathode ion sources is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving performance and lifetime of an indirectly heated cathode (IHC) ion source in an ion implanter. The method may comprise maintaining an arc chamber of the IHC ion source under vacuum during a maintenance of the ion implanter, wherein no gas is supplied to the arc chamber. The method may also comprise heating a cathode of the IHC ion source by supplying a filament with a current. The method may further comprise biasing the cathode with respect to the filament at a current level of 0.5-5 A without biasing the arc chamber with respect to the cathode. The method additionally comprise keeping a source magnet from producing a magnetic field inside the arc chamber.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: February 17, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Eric R. Cobb, Russell J. Low, Craig R. Chaney, Leo V. Klos
  • Publication number: 20080169427
    Abstract: Techniques for providing ion source feed materials are disclosed. In one particular exemplary embodiment, the techniques may be realized as a container for supplying an ion source feed material. The container may comprise an internal cavity to be pre-filled with an ion source feed material. The container may also comprise an outer body configured to be removably loaded into a corresponding housing that is coupled to an ion source chamber via a nozzle assembly. The container may further comprise an outlet to seal in the pre-filled ion source feed material, the outlet being further configured to engage with the nozzle assembly to establish a flow path between the internal cavity and the ion source chamber. The container may be configured to be a disposable component.
    Type: Application
    Filed: July 11, 2007
    Publication date: July 17, 2008
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher R. HATEM, Craig R. Chaney, Eric R. Cobb, Joseph C. Olson, Chris Campbell
  • Publication number: 20080072413
    Abstract: A method and clamp system for use on an ion implanter system for aligning a cathode and filament relative to one another in-situ are disclosed. The invention includes a clamp system having a clamp including a first clamp member separably coupled to a second clamp member, and an opening to a mount portion of one of the cathode and the filament in at least one of the clamp members. Each clamp member includes a surface to engage a mount portion of one of the cathode and the filament. The opening is adapted to receive a positioning tool to position the cathode and the filament relative to one another by moving the mount portion when the clamp is released. The mount portion may include a tool receiving member to facilitate accurate positioning.
    Type: Application
    Filed: August 1, 2005
    Publication date: March 27, 2008
    Inventors: Stephen Krause, Eric R. Cobb, Russell Low
  • Publication number: 20070137576
    Abstract: A technique for providing an inductively coupled radio frequency plasma flood gun is disclosed. In one particular exemplary embodiment, the technique may be realized as a plasma flood gun in an ion implantation system. The plasma flood gun may comprise: a plasma chamber having one or more apertures; a gas source capable of supplying at least one gaseous substance to the plasma chamber; and a power source capable of inductively coupling radio frequency electrical power into the plasma chamber to excite the at least one gaseous substance to generate a plasma. Entire inner surface of the plasma chamber may be free of metal-containing material and the plasma may not be exposed to any metal-containing component within the plasma chamber. In addition, the one or more apertures may be wide enough for at least one portion of charged particles from the plasma to flow through.
    Type: Application
    Filed: March 16, 2006
    Publication date: June 21, 2007
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter F. Kurunczi, Russell Low, Alexander S. Perel, Eric R. Cobb, Ethan Adam Wright