Patents by Inventor Eric R. Diebold

Eric R. Diebold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10617363
    Abstract: Methods and systems are disclosed analyzing a glucose level of a person having diabetes. The method, in at least one example, comprises receiving into a computing device a plurality of measured glucose values from a continuous glucose monitoring system coupled to a person having diabetes, analyzing the plurality of measured glucose values with a probability analysis tool on the computing device to determine a glucose threshold (gI0), and a boundary glucose value (g?) at a probability threshold where the person having diabetes requires at least a predetermined insulin dose, and comparing, with the computing device, the boundary glucose value (g?) to the glucose threshold (gI0), wherein if the boundary glucose value (g?) is greater than the glucose threshold (gI0) then the computing device performs an alert on a user interface.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: April 14, 2020
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Eric R Diebold, Alan Greenburg, David L Duke
  • Publication number: 20160287184
    Abstract: Methods and systems are disclosed analyzing a glucose level of a person having diabetes. The method, in at least one example, comprises receiving into a computing device a plurality of measured glucose values from a continuous glucose monitoring system coupled to a person having diabetes, analyzing the plurality of measured glucose values with a probability analysis tool on the computing device to determine a glucose threshold (gIo), and a boundary glucose value (g?) at a probability threshold where the person having diabetes requires at least a predetermined insulin dose, and comparing, with the computing device, the boundary glucose value (g?) to the glucose threshold (gIo), wherein if the boundary glucose value (g?) is greater than the glucose threshold (gIo) then the computing device performs an alert on a user interface.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 6, 2016
    Inventors: Eric R Diebold, Alan Greenburg, David L Duke
  • Patent number: 8992750
    Abstract: Embodiments of the invention include a test strip with a sample chamber opening spanning the width of the test strip at the sampling end and including a portion of the lateral sides at that end. The chamber is vertically bounded by upper and lower substrate layers, horizontally bounded by the front face of a spacer layer, and open on the remaining sides. The test strip fills rapidly and requires small sample volumes. Both 1-up and 2-up manufacturing techniques for producing such test strips eliminate registration and alignment steps, and other techniques relating to the 2-up technique (simultaneously manufacturing test strips arranged in multiple columns) are also disclosed.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 31, 2015
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Terry A. Beaty, Eric R. Diebold, Abner D. Joseph, Randall K. Riggles
  • Patent number: 8920628
    Abstract: Systems and methods for multiple analyte analysis are provided. In one embodiment, a method includes determining concentrations of first and second analytes in a sample. The first and second analytes may be, for example, glucose and hydroxybutyrate. In this form, an indication related to the measured concentration of hydroxybutyrate is provided in response to determining that the concentration of hydroxybutyrate is above a predetermined value. In a further aspect of this form, a quantitative indication representative of the measured glucose concentration is automatically provided regardless of the value of the measured glucose concentration. In another embodiment, a system includes a meter configured to interact with a test element to assess first and second analytes in a sample. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the description and drawings.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 30, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Martin T. Gerber, Eric R. Diebold
  • Publication number: 20140124384
    Abstract: Systems and methods for multiple analyte analysis are provided. In one embodiment, a method includes determining concentrations of first and second analytes in a sample. The first and second analytes may be, for example, glucose and hydroxybutyrate. In this form, an indication related to the measured concentration of hydroxybutyrate is provided in response to determining that the concentration of hydroxybutyrate is above a predetermined value. In a further aspect of this form, a quantitative indication representative of the measured glucose concentration is automatically provided regardless of the value of the measured glucose concentration. In another embodiment, a system includes a meter configured to interact with a test element to assess first and second analytes in a sample. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the description and drawings.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Martin T. Gerber, Eric R. Diebold
  • Patent number: 8586373
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: November 19, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8557989
    Abstract: The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 15, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Mitali Ghoshal, David Z. Deng, Jane Shiow-Chuan Tsai
  • Patent number: 8551308
    Abstract: An electrochemical biosensor with electrode elements that possess smooth, high-quality edges. These smooth edges define gaps between electrodes, electrode traces and contact pads. Due to the remarkable edge smoothness achieved with the present invention, the gaps can be quite small, which provides marked advantages in terms of test accuracy, speed and the number of different functionalities that can be packed into a single biosensor. Further, the present invention provides a novel biosensor production method in which entire electrode patterns for the inventive biosensors can be formed all at one, in nanoseconds—without regard to the complexity of the electrode patterns or the amount of conductive material that must be ablated to form them.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: October 8, 2013
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: Raghbir S. Bhullar, Eric R. Diebold, Brian S. Hill, Nigel Surridge, Paul Douglas Walling
  • Patent number: 8420404
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 16, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Publication number: 20130048512
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Application
    Filed: October 24, 2012
    Publication date: February 28, 2013
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, JR.
  • Patent number: 8298828
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 30, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8293904
    Abstract: The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: October 23, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Mitali Ghoshal, David Z. Deng, Jane S. C. Tsai
  • Patent number: 8288544
    Abstract: The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: October 16, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Mitali Ghoshal, David Z. Deng, Jane S.C. Tsai
  • Patent number: 8287703
    Abstract: An electrochemical biosensor with electrode elements that possess smooth, high-quality edges. These smooth edges define gaps between electrodes, electrode traces and contact pads. Due to the remarkable edge smoothness achieved with the present invention, the gaps can be quite small, which provides marked advantages in terms of test accuracy, speed and the number of different functionalities that can be packed into a single biosensor. Further, the present invention provides a novel biosensor production method in which entire electrode patterns for the inventive biosensors can be formed all at one, in nanoseconds—without regard to the complexity of the electrode patterns or the amount of conductive material that must be ablated to form them.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: October 16, 2012
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: Raghbir S. Bhullar, Eric R. Diebold, Brian S. Hill, Nigel Surridge, Paul Douglas Walling
  • Publication number: 20120205260
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Application
    Filed: March 13, 2012
    Publication date: August 16, 2012
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, JR.
  • Publication number: 20120125788
    Abstract: The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
    Type: Application
    Filed: September 20, 2011
    Publication date: May 24, 2012
    Inventors: Eric R. DIEBOLD, Mitali GHOSHAL, David Z. DENG, Jane S.C. TSAI
  • Patent number: 8148164
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 2.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: April 3, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 7867369
    Abstract: A biosensor having multiple electrical functionalities located both within and outside of the measurement zone in which a fluid sample is interrogated. Incredibly small and complex electrical patterns with high quality edges provide electrical functionalities in the biosensor and also provide the electrical wiring for the various other electrical devices provided in the inventive biosensor. In addition to a measurement zone with multiple and various electrical functionalities, biosensors of the present invention may be provided with a user interface zone, a digital device zone and/or a power generation zone. The inventive biosensors offer improved ease of use and performance, and decrease the computational burden and associated cost of the instruments that read the biosensors by adding accurate yet cost-effective functionalities to the biosensors themselves.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 11, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Raghbir S. Bhullar, Harvey B. Buck, Jr., Brian S. Hill, Paul Douglas Walling, Terry A. Beaty, David W. Burke, Eric R. Diebold
  • Publication number: 20100170807
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 2.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Application
    Filed: December 30, 2009
    Publication date: July 8, 2010
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, JR.
  • Patent number: RE42953
    Abstract: An electrochemical biosensor test strip with four new features. The test strip includes an indentation for tactile feel as to the location of the strips sample application port. The sample application port leads to a capillary test chamber, which includes a test reagent. The wet reagent includes from about 0.2% by weight to about 2% by weight polyethylene oxide from about 100 kilodaltons to about 900 kilodaltons mean molecular weight, which makes the dried reagent more hydrophilic and sturdier to strip processing steps, such as mechanical punching, and to mechanical manipulation by the test strip user. The roof of the capillary test chamber includes a transparent or translucent window which operates as a “fill to here” line, thereby identifying when enough test sample (a liquid sample, such as blood) has been added to the test chamber to accurately perform a test. The test strip may further include a notch located at the sample application port. The notch reduces a phenomenon called “dose hesitation”.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: November 22, 2011
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: William F. Crismore, Nigel A. Surridge, Richard J. Bodensteiner, Eric R. Diebold, R. Dale Delk, David W. Burke, Jiaxiong Jason Ho