Patents by Inventor Eric Randall Kee

Eric Randall Kee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240144010
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices for detecting objects are provided. For example, the disclosed technology can obtain a representation of sensor data associated with an environment surrounding a vehicle. Further, the sensor data can include sensor data points. A point classification and point property estimation can be determined for each of the sensor data points and a portion of the sensor data points can be clustered into an object instance based on the point classification and point property estimation for each of the sensor data points. A collection of point classifications and point property estimations can be determined for the portion of the sensor data points clustered into the object instance. Furthermore, object instance property estimations for the object instance can be determined based on the collection of point classifications and point property estimations for the portion of the sensor data points clustered into the object instance.
    Type: Application
    Filed: October 30, 2023
    Publication date: May 2, 2024
    Inventors: Eric Randall Kee, Carlos Vallespi-Gonzalez, Gregory P. Meyer, Ankit Laddha
  • Patent number: 11926337
    Abstract: Systems and methods for determining object intentions through visual attributes are provided. A method can include determining, by a computing system, one or more regions of interest. The regions of interest can be associated with surrounding environment of a first vehicle. The method can include determining, by a computing system, spatial features and temporal features associated with the regions of interest. The spatial features can be indicative of a vehicle orientation associated with a vehicle of interest. The temporal features can be indicative of a semantic state associated with signal lights of the vehicle of interest. The method can include determining, by the computing system, a vehicle intention. The vehicle intention can be based on the spatial and temporal features. The method can include initiating, by the computing system, an action. The action can be based on the vehicle intention.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: March 12, 2024
    Assignee: UATC, LLC
    Inventors: Davi Eugenio Nascimento Frossard, Eric Randall Kee, Raquel Urtasun
  • Patent number: 11885910
    Abstract: Systems and methods for detecting and classifying objects proximate to an autonomous vehicle can include a sensor system and a vehicle computing system. The sensor system includes at least one LIDAR system configured to transmit ranging signals relative to the autonomous vehicle and to generate LIDAR data. The vehicle computing system receives the LIDAR data from the sensor system. The vehicle computing system also determines at least a range-view representation of the LIDAR data and a top-view representation of the LIDAR data, wherein the range-view representation contains a fewer number of total data points than the top-view representation. The vehicle computing system further detects objects of interest in the range-view representation of the LIDAR data and generates a bounding shape for each of the detected objects of interest in the top-view representation of the LIDAR data.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: January 30, 2024
    Assignee: UATC, LLC
    Inventors: Carlos Vallespi-Gonzalez, Ankit Laddha, Gregory P. Meyer, Eric Randall Kee
  • Patent number: 11836623
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices for detecting objects are provided. For example, the disclosed technology can obtain a representation of sensor data associated with an environment surrounding a vehicle. Further, the sensor data can include sensor data points. A point classification and point property estimation can be determined for each of the sensor data points and a portion of the sensor data points can be clustered into an object instance based on the point classification and point property estimation for each of the sensor data points. A collection of point classifications and point property estimations can be determined for the portion of the sensor data points clustered into the object instance. Furthermore, object instance property estimations for the object instance can be determined based on the collection of point classifications and point property estimations for the portion of the sensor data points clustered into the object instance.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: December 5, 2023
    Assignee: UATC, LLC
    Inventors: Eric Randall Kee, Carlos Vallespi-Gonzalez, Gregory P. Meyer, Ankit Laddha
  • Patent number: 11620838
    Abstract: Systems and methods for answering region specific questions are provided. A method includes obtaining a regional scene question including an attribute query and a spatial region of interest for a training scene depicting a surrounding environment of a vehicle. The method includes obtaining a universal embedding for the training scene and an attribute embedding for the attribute query of the scene question. The universal embedding can identify sensory data corresponding to the training scene that can be used to answer questions concerning a number of different attributes in the training scene. The attribute embedding can identify aspects of an attribute that can be used to answer questions specific to the attribute. The method includes determining an answer embedding based on the universal embedding and the attribute embedding and determining a regional scene answer to the regional scene question based on the spatial region of interest and the answer embedding.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: April 4, 2023
    Assignee: UATC, LLC
    Inventors: Sean Segal, Wenjie Luo, Eric Randall Kee, Ersin Yumer, Raquel Urtasun, Abbas Sadat
  • Publication number: 20220292844
    Abstract: Systems and methods for determining object intentions through visual attributes are provided. A method can include determining, by a computing system, one or more regions of interest. The regions of interest can be associated with surrounding environment of a first vehicle. The method can include determining, by a computing system, spatial features and temporal features associated with the regions of interest. The spatial features can be indicative of a vehicle orientation associated with a vehicle of interest. The temporal features can be indicative of a semantic state associated with signal lights of the vehicle of interest. The method can include determining, by the computing system, a vehicle intention. The vehicle intention can be based on the spatial and temporal features. The method can include initiating, by the computing system, an action. The action can be based on the vehicle intention.
    Type: Application
    Filed: April 28, 2022
    Publication date: September 15, 2022
    Inventors: Davi Eugenio Nascimento Frossard, Eric Randall Kee, Raquel Urtasun
  • Patent number: 11341356
    Abstract: Systems and methods for determining object intentions through visual attributes are provided. A method can include determining, by a computing system, one or more regions of interest. The regions of interest can be associated with surrounding environment of a first vehicle. The method can include determining, by a computing system, spatial features and temporal features associated with the regions of interest. The spatial features can be indicative of a vehicle orientation associated with a vehicle of interest. The temporal features can be indicative of a semantic state associated with signal lights of the vehicle of interest. The method can include determining, by the computing system, a vehicle intention. The vehicle intention can be based on the spatial and temporal features. The method can include initiating, by the computing system, an action. The action can be based on the vehicle intention.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: May 24, 2022
    Assignee: UATC, LLC
    Inventors: Davi Eugenio Nascimento Frossard, Eric Randall Kee, Raquel Urtasun
  • Publication number: 20220051035
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices for detecting objects are provided. For example, the disclosed technology can obtain a representation of sensor data associated with an environment surrounding a vehicle. Further, the sensor data can include sensor data points. A point classification and point property estimation can be determined for each of the sensor data points and a portion of the sensor data points can be clustered into an object instance based on the point classification and point property estimation for each of the sensor data points. A collection of point classifications and point property estimations can be determined for the portion of the sensor data points clustered into the object instance. Furthermore, object instance property estimations for the object instance can be determined based on the collection of point classifications and point property estimations for the portion of the sensor data points clustered into the object instance.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 17, 2022
    Inventors: Eric Randall Kee, Carlos Vallespi-Gonzalez, Gregory P. Meyer, Ankit Laddha
  • Patent number: 11164016
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices for detecting objects are provided. For example, the disclosed technology can obtain a representation of sensor data associated with an environment surrounding a vehicle. Further, the sensor data can include sensor data points. A point classification and point property estimation can be determined for each of the sensor data points and a portion of the sensor data points can be clustered into an object instance based on the point classification and point property estimation for each of the sensor data points. A collection of point classifications and point property estimations can be determined for the portion of the sensor data points clustered into the object instance. Furthermore, object instance property estimations for the object instance can be determined based on the collection of point classifications and point property estimations for the portion of the sensor data points clustered into the object instance.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: November 2, 2021
    Assignee: UATC, LLC
    Inventors: Eric Randall Kee, Carlos Vallespi-Gonzalez, Gregory P. Meyer, Ankit Laddha
  • Publication number: 20210150244
    Abstract: Systems and methods for answering region specific questions are provided. A method includes obtaining a regional scene question including an attribute query and a spatial region of interest for a training scene depicting a surrounding environment of a vehicle. The method includes obtaining a universal embedding for the training scene and an attribute embedding for the attribute query of the scene question. The universal embedding can identify sensory data corresponding to the training scene that can be used to answer questions concerning a number of different attributes in the training scene. The attribute embedding can identify aspects of an attribute that can be used to answer questions specific to the attribute. The method includes determining an answer embedding based on the universal embedding and the attribute embedding and determining a regional scene answer to the regional scene question based on the spatial region of interest and the answer embedding.
    Type: Application
    Filed: September 8, 2020
    Publication date: May 20, 2021
    Inventors: Sean Segal, Wenjie Luo, Eric Randall Kee, Ersin Yumer, Raquel Urtasun, Abbas Sadat
  • Publication number: 20210025989
    Abstract: Systems and methods for detecting and classifying objects proximate to an autonomous vehicle can include a sensor system and a vehicle computing system. The sensor system includes at least one LIDAR system configured to transmit ranging signals relative to the autonomous vehicle and to generate LIDAR data. The vehicle computing system receives the LIDAR data from the sensor system. The vehicle computing system also determines at least a range-view representation of the LIDAR data and a top-view representation of the LIDAR data, wherein the range-view representation contains a fewer number of total data points than the top-view representation. The vehicle computing system further detects objects of interest in the range-view representation of the LIDAR data and generates a bounding shape for each of the detected objects of interest in the top-view representation of the LIDAR data.
    Type: Application
    Filed: October 9, 2020
    Publication date: January 28, 2021
    Inventors: Carlos Vallespi-Gonzalez, Ankit Laddha, Gregory P. Meyer, Eric Randall Kee
  • Patent number: 10809361
    Abstract: Systems and methods for detecting and classifying objects proximate to an autonomous vehicle can include a sensor system and a vehicle computing system. The sensor system includes at least one LIDAR system configured to transmit ranging signals relative to the autonomous vehicle and to generate LIDAR data. The vehicle computing system receives the LIDAR data from the sensor system. The vehicle computing system also determines at least a range-view representation of the LIDAR data and a top-view representation of the LIDAR data, wherein the range-view representation contains a fewer number of total data points than the top-view representation. The vehicle computing system further detects objects of interest in the range-view representation of the LIDAR data and generates a bounding shape for each of the detected objects of interest in the top-view representation of the LIDAR data.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: October 20, 2020
    Assignee: UATC, LLC
    Inventors: Carlos Vallespi-Gonzalez, Ankit Laddha, Gregory P Meyer, Eric Randall Kee
  • Publication number: 20190384994
    Abstract: Systems and methods for determining object intentions through visual attributes are provided. A method can include determining, by a computing system, one or more regions of interest. The regions of interest can be associated with surrounding environment of a first vehicle. The method can include determining, by a computing system, spatial features and temporal features associated with the regions of interest. The spatial features can be indicative of a vehicle orientation associated with a vehicle of interest. The temporal features can be indicative of a semantic state associated with signal lights of the vehicle of interest. The method can include determining, by the computing system, a vehicle intention. The vehicle intention can be based on the spatial and temporal features. The method can include initiating, by the computing system, an action. The action can be based on the vehicle intention.
    Type: Application
    Filed: February 26, 2019
    Publication date: December 19, 2019
    Inventors: Davi Eugenio Nascimento Frossard, Eric Randall Kee, Raquel Urtasun
  • Publication number: 20190354782
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices for detecting objects are provided. For example, the disclosed technology can obtain a representation of sensor data associated with an environment surrounding a vehicle. Further, the sensor data can include sensor data points. A point classification and point property estimation can be determined for each of the sensor data points and a portion of the sensor data points can be clustered into an object instance based on the point classification and point property estimation for each of the sensor data points. A collection of point classifications and point property estimations can be determined for the portion of the sensor data points clustered into the object instance. Furthermore, object instance property estimations for the object instance can be determined based on the collection of point classifications and point property estimations for the portion of the sensor data points clustered into the object instance.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 21, 2019
    Inventors: Eric Randall Kee, Carlos Vallespi-Gonzalez, Gregory P. Meyer, Ankit Laddha
  • Publication number: 20180348346
    Abstract: Systems and methods for detecting and classifying objects proximate to an autonomous vehicle can include a sensor system and a vehicle computing system. The sensor system includes at least one LIDAR system configured to transmit ranging signals relative to the autonomous vehicle and to generate LIDAR data. The vehicle computing system receives the LIDAR data from the sensor system. The vehicle computing system also determines at least a range-view representation of the LIDAR data and a top-view representation of the LIDAR data, wherein the range-view representation contains a fewer number of total data points than the top-view representation. The vehicle computing system further detects objects of interest in the range-view representation of the LIDAR data and generates a bounding shape for each of the detected objects of interest in the top-view representation of the LIDAR data.
    Type: Application
    Filed: February 28, 2018
    Publication date: December 6, 2018
    Inventors: Carlos Vallespi-Gonzalez, Ankit Laddha, Gregory P Meyer, Eric Randall Kee