Patents by Inventor Eric Rubio

Eric Rubio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883907
    Abstract: Devices, systems, and methods are directed to automated techniques for fitting flanges to tubular sections used to form tubular structures, such as large-scale structures used in industrial applications (e.g., wind towers and pipelines). As compared to manual techniques for fitting flanges to tubular sections, the devices, systems, and methods of the present disclosure facilitate faster attachment of flanges, which may be useful for achieving cost-effective throughput. By way of further comparison to manual techniques, the devices, systems, and methods of the present disclosure may, further or instead, facilitate achieving tighter dimensional tolerances. In turn, such tighter dimensional tolerances may be useful for forming thinner-walled, lighter, and lower cost tubular structures. Still further or in the alternative, automated techniques for fitting flanges to tubular sections may facilitate attachment of multipiece flanges or other non-traditional flange geometries.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: January 30, 2024
    Assignee: KEYSTONE TOWER SYSTEMS, INC.
    Inventors: Rosalind K. Takata, Loren Daniel Bridgers, Eric D. Smith, Eric Rubio
  • Publication number: 20220055159
    Abstract: Devices, systems, and methods are directed to automated techniques for fitting flanges to tubular sections used to form tubular structures, such as large-scale structures used in industrial applications (e.g., wind towers and pipelines). As compared to manual techniques for fitting flanges to tubular sections, the devices, systems, and methods of the present disclosure facilitate faster attachment of flanges, which may be useful for achieving cost-effective throughput. By way of further comparison to manual techniques, the devices, systems, and methods of the present disclosure may, further or instead, facilitate achieving tighter dimensional tolerances. In turn, such tighter dimensional tolerances may be useful for forming thinner-walled, lighter, and lower cost tubular structures. Still further or in the alternative, automated techniques for fitting flanges to tubular sections may facilitate attachment of multipiece flanges or other non-traditional flange geometries.
    Type: Application
    Filed: November 3, 2021
    Publication date: February 24, 2022
    Inventors: Rosalind K. Takata, Loren Daniel Bridgers, Eric D. Smith, Eric Rubio
  • Patent number: 11185952
    Abstract: Devices, systems, and methods are directed to automated techniques for fitting flanges to tubular sections used to form tubular structures, such as large-scale structures used in industrial applications (e.g., wind towers and pipelines). As compared to manual techniques for fitting flanges to tubular sections, the devices, systems, and methods of the present disclosure facilitate faster attachment of flanges, which may be useful for achieving cost-effective throughput. By way of further comparison to manual techniques, the devices, systems, and methods of the present disclosure may, further or instead, facilitate achieving tighter dimensional tolerances. In turn, such tighter dimensional tolerances may be useful for forming thinner-walled, lighter, and lower cost tubular structures. Still further or in the alternative, automated techniques for fitting flanges to tubular sections may facilitate attachment of multipiece flanges or other non-traditional flange geometries.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: November 30, 2021
    Assignee: Keystone Tower Systems, Inc.
    Inventors: Rosalind K. Takata, Loren Daniel Bridgers, Eric D. Smith, Eric Rubio
  • Publication number: 20200018431
    Abstract: Devices, systems, and methods are directed to automated techniques for fitting flanges to tubular sections used to form tubular structures, such as large-scale structures used in industrial applications (e.g., wind towers and pipelines). As compared to manual techniques for fitting flanges to tubular sections, the devices, systems, and methods of the present disclosure facilitate faster attachment of flanges, which may be useful for achieving cost-effective throughput. By way of further comparison to manual techniques, the devices, systems, and methods of the present disclosure may, further or instead, facilitate achieving tighter dimensional tolerances. In turn, such tighter dimensional tolerances may be useful for forming thinner-walled, lighter, and lower cost tubular structures. Still further or in the alternative, automated techniques for fitting flanges to tubular sections may facilitate attachment of multipiece flanges or other non-traditional flange geometries.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 16, 2020
    Inventors: Rosalind K. Takata, Loren Daniel Bridgers, Eric D. Smith, Eric Rubio