Patents by Inventor Eric S. Fain

Eric S. Fain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10376310
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: August 13, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Publication number: 20180014882
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 9801684
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 31, 2017
    Assignee: PACESETTER, INC.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Publication number: 20160331453
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Application
    Filed: July 27, 2016
    Publication date: November 17, 2016
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 9427579
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: August 30, 2016
    Assignee: PACESETTER, INC.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 9204795
    Abstract: Devices, systems, and methods for communicating with an implantable medical device are disclosed. A communication device may include an input/output interface configured to communicate with a wireless communication device, a communication interface configured to communicate with a remote system, a detector configured to detect when the wireless communication device is within a range of the non-implantable communication device, wherein communication between the wireless interface and the wireless communication device is initiated upon detection by the detector that the wireless communication device is within the range of the non-implantable communication device, and a processor configured to perform an analysis of data received from the wireless communication device via the input/output interface and associated with the implantable medical device. The communication device may include a user interface configured to receive data input by a user.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: December 8, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Eric S. Fain, Ronald R. Rios
  • Patent number: 9168372
    Abstract: A method and system are provided for removing, from an implant chamber of a heart, a leadless implantable medical device (LIMD) having a distal end and a proximal end. The distal end is configured to be actively secured to tissue in the implant chamber of the heart. The proximal end is configured to be coupled to a distal end of an indwelling retrieval mechanism (IRM). The IRM extends from the heart along a vessel, the IRM having a proximal end configured to be anchored at a temporary anchor site. The method comprises detaching the IRM from the anchor site, loading a retrieval tool over the proximal end of the IRM and along the body of the IRM. The retrieval tool has a lumen therein that receives the IRM as the retrieval tool re-enters the vessel, thereby allowing the retrieval tool to engage the LIMD.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: October 27, 2015
    Assignee: PACESETTER, INC.
    Inventor: Eric S. Fain
  • Publication number: 20140313051
    Abstract: A communication device for an implantable medical device may include: an input/output interface configured to communicate with a wireless communication device; a communication interface configured to communicate with a remote system; and a processor configured to perform an analysis of data received from the wireless communication device via the input/output interface and associated with the implantable medical device. The communication device may include a user interface configured to receive data input by a user. A communication system may include a wireless communication device and the aforementioned communication device.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Inventors: Eric S. Fain, Ronald R. Rios
  • Publication number: 20140257324
    Abstract: A method and system are provided for removing, from an implant chamber of a heart, a leadless implantable medical device (LIMD) having a distal end and a proximal end. The distal end is configured to be actively secured to tissue in the implant chamber of the heart. The proximal end is configured to be coupled to a distal end of an indwelling retrieval mechanism (IRM). The IRM extends from the heart along a vessel, the IRM having a proximal end configured to be anchored at a temporary anchor site. The method comprises detaching the IRM from the anchor site, loading a retrieval tool over the proximal end of the IRM and along the body of the IRM. The retrieval tool has a lumen therein that receives the IRM as the retrieval tool re-enters the vessel, thereby allowing the retrieval tool to engage the LIMD.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: PACESETTER, INC.
    Inventor: Eric S. Fain
  • Patent number: 8798762
    Abstract: A communication device for an implantable medical device may include: an input/output interface configured to communicate with a wireless communication device; a communication interface configured to communicate with a remote system; and a processor configured to perform an analysis of data received from the wireless communication device via the input/output interface and associated with the implantable medical device. The communication device may include a user interface configured to receive data input by a user. A communication system may include a wireless communication device and the aforementioned communication device.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 5, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Eric S. Fain, Ronald R. Rios
  • Patent number: 8626293
    Abstract: A method for detecting potential failures by a lead of an implantable medical device is provided. The method includes sensing a first signal over a first channel between a first combination of electrodes on the lead and sensing a second signal from a second channel between a second combination of electrodes on the lead. The method determines whether at least one of the first and second signals is representative of a potential failure in the lead and identifies a failure and the electrode associated with the failure based on which of the first and second sensed signals is representative of the potential failure. Optionally, when the first and second sensed signals are both representative of the potential failure, the method further includes determining whether the first and second sensed signals are correlated with one another. When the first and second sensed signals are correlated, the method declares an electrode common to both of the first and second combinations to be associated with the failure.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: January 7, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, John W. Poore, Richard Williamson, Gabriel A. Mouchawar, Eric S. Fain
  • Publication number: 20130085489
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Applicant: PACESETTER, INC.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 8391980
    Abstract: A method for detecting potential failures by a lead of an implantable medical device is provided. The method includes sensing a first signal over a first channel between a first combination of electrodes on the lead and sensing a second signal from a second channel between a second combination of electrodes on the lead. The method determines whether at least one of the first and second signals is representative of a potential failure in the lead and identifies a failure and the electrode associated with the failure based on which of the first and second sensed signals is representative of the potential failure. Optionally, when the first and second sensed signals are both representative of the potential failure, the method further includes determining whether the first and second sensed signals are correlated with one another. When the first and second sensed signals are correlated, the method declares an electrode common to both of the first and second combinations to be associated with the failure.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: March 5, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, John W. Poore, Richard Williamson, Gabriel A. Mouchawar, Eric S. Fain
  • Publication number: 20120108987
    Abstract: Implantable systems, and methods for use therewith, for monitoring arterial blood pressure on a chronic basis are provided herein. A first signal indicative of electrical activity of a patient's heart, and a second signal indicative of mechanical activity of the patient's heart, are obtained using implanted electrodes and an implanted sensor. By measuring the times between various features of the first signal relative to features of the second signal, values indicative of systolic pressure and diastolic pressure can be determined. In specific embodiments, such features are used to determine a peak pulse arrival time (PPAT), which is used to determine the value indicative of systolic pressure. Additionally, a peak-to-peak amplitude at the maximum peak of the second signal, and the value indicative of systolic pressure, can be used to determine the value indicative of diastolic pressure.
    Type: Application
    Filed: January 3, 2012
    Publication date: May 3, 2012
    Inventors: Timothy A. Fayram, Eric S. Fain, Paul A. Levine, Anders Björling
  • Publication number: 20120101544
    Abstract: When a medical procedure is performed on a patient in whom an implantable medical device is implanted, the medical procedure may have undesired effects on the medical device, such as triggering a response that initiates therapy by the device that is unnecessary and potentially dangerous to the patient. Systems and methods may facilitate performing of such medical procedures on such patients by automatically reprogramming the medical device, monitoring for one or more detectable characteristics associated with the medical procedure to be performed, and automatically restoring normal operation of the IMD after the medical procedure is completed.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 26, 2012
    Applicant: PACESETTER, INC.
    Inventors: Katie Hoberman, Eric S. Fain, Nicola Pillay
  • Patent number: 8162841
    Abstract: Certain embodiments of the present invention are related to an implantable monitoring device to monitor a patient's arterial blood pressure, where the device is configured to be implanted subcutaneously. The device includes subcutaneous (SubQ) electrodes and a plethysmography sensor. Additionally, the device includes an arterial blood pressure monitor configured to determine at least one value indicative of the patient's arterial blood pressure based on at least one detected predetermined feature of a SubQ ECG and at least one detected predetermined feature of a plethysmography signal. Alternative embodiments of the present invention are directed to a non-implantable monitoring device to monitor a patient's arterial blood pressure based on features of a surface ECG and a plethysmography signal obtained from a non-implanted sensor.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: April 24, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Allen J. Keel, Brian Jeffrey Wenzel, Edward Karst, Wenbo Hou, Taraneh Ghaffari Farazi, Timothy A. Fayram, Eric S. Fain, Paul A. Levine
  • Patent number: 8147416
    Abstract: Implantable systems, and methods for use therewith, for monitoring arterial blood pressure on a chronic basis are provided herein. A first signal indicative of electrical activity of a patient's heart, and a second signal indicative of mechanical activity of the patient's heart, are obtained using implanted electrodes and an implanted sensor. By measuring the times between various features of the first signal relative to features of the second signal, values indicative of systolic pressure and diastolic pressure can be determined. In specific embodiments, such features are used to determine a peak pulse arrival time (PPAT), which is used to determine the value indicative of systolic pressure. Additionally, a peak-to-peak amplitude at the maximum peak of the second signal, and the value indicative of systolic pressure, can be used to determine the value indicative of diastolic pressure.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: April 3, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Timothy A. Fayram, Eric S. Fain, Paul A. Levine, Anders Björling
  • Publication number: 20110230734
    Abstract: A communication device for an implantable medical device may include: an input/output interface configured to communicate with a wireless communication device; a communication interface configured to communicate with a remote system; and a processor configured to perform an analysis of data received from the wireless communication device via the input/output interface and associated with the implantable medical device. The communication device may include a user interface configured to receive data input by a user. A communication system may include a wireless communication device and the aforementioned communication device.
    Type: Application
    Filed: May 31, 2011
    Publication date: September 22, 2011
    Inventors: Eric S. Fain, Ronald R. Rios
  • Patent number: 7974702
    Abstract: A communication device for an implantable medical device may include: an input/output interface configured to communicate with a wireless communication device; a communication interface configured to communicate with a remote system; and a processor configured to perform an analysis of data received from the wireless communication device via the input/output interface and associated with the implantable medical device. The communication device may include a user interface configured to receive data input by a user. A communication system may include a wireless communication device and the aforementioned communication device.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: July 5, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Eric S. Fain, Ronald R. Rios
  • Patent number: 7930017
    Abstract: A method and system are provided for trending variation in coronary burden across multiple heart rate ranges. The method and system include obtaining cardiac signals having a segment of interest over a period of time where each cardiac signal has an associated heart rate that falls within at least one heart rate range. Segment variations of the segment of interest are determined and grouped based on the associated heart rates to produce distributions of segment variations that are associated with the heart rate ranges. Trending information is produced by automatically comparing the distributions of segment variations between different heart rate ranges.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: April 19, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Eric S. Fain, Jay Snell, Katie Hoberman, Laleh Jalali, Bing Zhu, Jeffery D. Snell