Patents by Inventor Eric S. Shapiro

Eric S. Shapiro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240146301
    Abstract: A common gate resistor bypass arrangement for a stacked arrangement of FET switches, the arrangement including a series combination of an nMOS transistor and a pMOS transistor connected across a common gate resistor. During at least a transition portion of the transition state of the stacked arrangement of FET switches, the nMOS transistor and the pMOS transistor are both in an ON state and bypass the common gate resistor. On the other hand, during at least a steady state portion of the ON steady state and the OFF steady state of the stacked arrangement of FET switches, one of the nMOS transistor and the pMOS transistor is in an OFF state and the other of the nMOS transistor and the pMOS transistor is in an ON state, thus not bypassing the common gate resistor.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 2, 2024
    Inventors: Alper GENC, Fleming LAM, Eric S. SHAPIRO, Ravindranath SHRIVASTAVA
  • Patent number: 11955932
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: April 9, 2024
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20240063789
    Abstract: A FET switch stack and a method to operate a FET switch stack. The FET switch stack includes a stacked arrangement of body bypass FET switches connected across respective common body resistors. The body bypass FET switches bypass the respective common body resistors during the OFF steady state of the FET switch stack and do not bypass the respective common body resistors during the ON steady state.
    Type: Application
    Filed: September 25, 2023
    Publication date: February 22, 2024
    Inventors: Eric S. SHAPIRO, Ravindranath D. SHRIVASTAVA, Fleming LAM, Matt ALLISON
  • Patent number: 11855611
    Abstract: Implementing a series gate resistor in a switching circuit results in several performance improvements. Few examples are better insertion loss, lower breakdown voltage requirements and a lower frequency corner. These benefits come at the expense of a slower switching time. Methods and devices offering solutions to this problem are described. Using a concept of bypassing the series gate resistor during transition time, a fast switching time can be achieved while the above-mentioned performance improvements are maintained.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: December 26, 2023
    Assignee: pSemi Corporation
    Inventors: Payman Shanjani, Eric S. Shapiro
  • Publication number: 20230387864
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11742820
    Abstract: A phase shifter unit cell or a connected set of such cells that can be well isolated from external circuitry and which do not introduce insertion loss into an RF signal path, exhibit good return loss, and further provides additional advantages when combined with bracketing attenuator circuits. More particularly, embodiments integrate a high-isolation function within a phase shifter circuit by breaking the complimentary nature of the control signals to a phase shifter cell to provide greater control of switch states internal to the phase shifter cell and thus enable a distinct high-isolation state, and by including a switchable shunt termination resistor for use in the high-isolation state. Some embodiments are serially coupled to attenuator circuits to enable synergistic interaction that reduces overall die size and/or increases isolation. One such embodiment positions a high-isolation phase shifter cell in accordance with the present invention between bracketing programmable attenuators.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: August 29, 2023
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, Peter Bacon
  • Publication number: 20230208417
    Abstract: Methods and devices to address the undesired DC voltage distribution across switch stacks in OFF state are disclosed. The disclosed devices include charge control elements that sample the RF signal to generate superimposed voltages at specific points of the switch stack biasing circuit. The provided voltages help reducing the drooping voltages on drain/source/body terminals of the transistors within the stack by supplying the current drawn by drain/source terminals of the stacked transistors and/or by sinking the body leakage current exiting the body terminals of such transistors. Methods and techniques teaching how to provide proper tapping points in the biasing circuit to sample the RF signal are also disclosed.
    Type: Application
    Filed: December 27, 2022
    Publication date: June 29, 2023
    Inventors: Eric S. SHAPIRO, Simon Edward WILLARD
  • Patent number: 11670555
    Abstract: Method and devices to reduce integrated circuit fabrication process yield loss due to undesired interactions between PCMs and the wafer test probes during wafer sorting tests are disclosed. The described methods entail the use of a properly patterned metal layer on the PCM dies adjacent to the product dies under test. Such patterned metal layers shield traces of the wafer probes from the circuits of the PCM dies. Various exemplary metal layer patterns are also presented.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: June 6, 2023
    Assignee: PSEMI CORPORATION
    Inventors: Jacob Hamilton, Tran Kononova, Jay Kothari, Matt Allison, Kim T. Nguyen, Eric S. Shapiro
  • Patent number: 11664769
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: May 30, 2023
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20230140958
    Abstract: Implementing a series gate resistor in a switching circuit results in several performance improvements. Few examples are better insertion loss, lower breakdown voltage requirements and a lower frequency corner. These benefits come at the expense of a slower switching time. Methods and devices offering solutions to this problem are described. Using a concept of bypassing the series gate resistor during transition time, a fast switching time can be achieved while the above-mentioned performance improvements are maintained.
    Type: Application
    Filed: September 8, 2022
    Publication date: May 11, 2023
    Inventors: Payman Shanjani, Eric S. Shapiro
  • Patent number: 11569812
    Abstract: Methods and devices to address the undesired DC voltage distribution across switch stacks in OFF state are disclosed. The disclosed devices include charge control elements that sample the RF signal to generate superimposed voltages at specific points of the switch stack biasing circuit. The provided voltages help reducing the drooping voltages on drain/source/body terminals of the transistors within the stack by supplying the current drawn by drain/source terminals of the stacked transistors and/or by sinking the body leakage current exiting the body terminals of such transistors. Methods and techniques teaching how to provide proper tapping points in the biasing circuit to sample the RF signal are also disclosed.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: January 31, 2023
    Assignee: PSEMI CORPORATION
    Inventors: Eric S. Shapiro, Simon Edward Willard
  • Publication number: 20220368287
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: June 17, 2022
    Publication date: November 17, 2022
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11444614
    Abstract: Implementing a series gate resistor in a switching circuit results in several performance improvements. Few examples are better insertion loss, lower breakdown voltage requirements and a lower frequency corner. These benefits come at the expense of a slower switching time. Methods and devices offering solutions to this problem are described. Using a concept of bypassing the series gate resistor during transition time, a fast switching time can be achieved while the abovementioned performance improvements are maintained.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: September 13, 2022
    Assignee: pSemi Corporation
    Inventors: Payman Shanjani, Eric S. Shapiro
  • Patent number: 11405034
    Abstract: A FET switch stack and a method to operate a FET switch stack. The FET switch stack includes a stacked arrangement of body bypass FET switches connected across respective common body resistors. The body bypass FET switches bypass the respective common body resistors during the OFF steady state of the FET switch stack and do not bypass the respective common body resistors during the ON steady state.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 2, 2022
    Assignee: PSEMI CORPORATION
    Inventors: Eric S. Shapiro, Ravindranath D. Shrivastava, Fleming Lam, Matt Allison
  • Patent number: 11405035
    Abstract: A common gate resistor bypass arrangement for a stacked arrangement of FET switches, the arrangement including a series combination of an nMOS transistor and a pMOS transistor connected across a common gate resistor. During at least a transition portion of the transition state of the stacked arrangement of FET switches, the nMOS transistor and the pMOS transistor are both in an ON state and bypass the common gate resistor. On the other hand, during at least a steady state portion of the ON steady state and the OFF steady state of the stacked arrangement of FET switches, one of the nMOS transistor and the pMOS transistor is in an OFF state and the other of the nMOS transistor and the pMOS transistor is in an ON state, thus not bypassing the common gate resistor.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: August 2, 2022
    Assignee: PSEMI CORPORATION
    Inventors: Alper Genc, Fleming Lam, Eric S. Shapiro, Ravindranath Shrivastava
  • Patent number: 11374540
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 28, 2022
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20220199475
    Abstract: Method and devices to reduce integrated circuit fabrication process yield loss due to undesired interactions between PCMs and the wafer test probes during wafer sorting tests are disclosed. The described methods entail the use of a properly patterned metal layer on the PCM dies adjacent to the product dies under test. Such patterned metal layers shield traces of the wafer probes from the circuits of the PCM dies. Various exemplary metal layer patterns are also presented.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Inventors: Jacob HAMILTON, Tran KONONOVA, Jay KOTHARI, Matt ALLISON, Kim T. NGUYEN, Eric S. SHAPIRO
  • Publication number: 20220038097
    Abstract: Methods and devices to reduce gate induced drain leakage current in RF switch stacks are disclosed. The described devices utilize multiple discharge paths and/or less negative body bias voltages without compromising non-linear performance and power handling capability of power switches. Moreover, more compact bias voltage generation circuits with smaller footprint can be implemented as part of the disclosed devices.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 3, 2022
    Inventors: Alper GENC, Eric S. SHAPIRO
  • Publication number: 20220021367
    Abstract: A phase shifter unit cell or a connected set of such cells that can be well isolated from external circuitry and which do not introduce insertion loss into an RF signal path, exhibit good return loss, and further provides additional advantages when combined with bracketing attenuator circuits. More particularly, embodiments integrate a high-isolation function within a phase shifter circuit by breaking the complimentary nature of the control signals to a phase shifter cell to provide greater control of switch states internal to the phase shifter cell and thus enable a distinct high-isolation state, and by including a switchable shunt termination resistor for use in the high-isolation state. Some embodiments are serially coupled to attenuator circuits to enable synergistic interaction that reduces overall die size and/or increases isolation. One such embodiment positions a high-isolation phase shifter cell in accordance with the present invention between bracketing programmable attenuators.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 20, 2022
    Inventors: Eric S. Shapiro, Peter Bacon
  • Publication number: 20210391858
    Abstract: Methods and devices to address the undesired DC voltage distribution across switch stacks in OFF state are disclosed. The disclosed devices include charge control elements that sample the RF signal to generate superimposed voltages at specific points of the switch stack biasing circuit. The provided voltages help reducing the drooping voltages on drain/source/body terminals of the transistors within the stack by supplying the current drawn by drain/source terminals of the stacked transistors and/or by sinking the body leakage current exiting the body terminals of such transistors. Methods and techniques teaching how to provide proper tapping points in the biasing circuit to sample the RF signal are also disclosed.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Eric S. SHAPIRO, Simon Edward WILLARD