Patents by Inventor Eric Seibel

Eric Seibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050085721
    Abstract: A scanning method for scanning samples of biological cells using optical tomography includes preparing, acquiring, reconstructing and viewing three-dimensional images of cell samples. Concentration and enrichment of the cell sample follows. The cell sample is stained. Cells are isolated from the cell sample and purified. A cell/solvent mixture is injected into a gel by centrifugation. A cell/gel mixture is injected into a capillary tube until a cell appears centered in a field of view using a step flow method. An optical imaging system, such as a fixed or variable motion optical tomography system acquires a projection image. The sample is rotated about a tube axis to generate additional projections. Once image acquisition is completed, the acquired shawdowgrams or image projections are corrected for errors. A computer or other equivalent processor is used to compute filtered backprojection information for 3D reconstruction.
    Type: Application
    Filed: October 13, 2004
    Publication date: April 21, 2005
    Inventors: Mark Fauver, John Rahn, Eric Seibel, Alan Nelson
  • Patent number: 6867753
    Abstract: A virtual image is registered among a perceived real world background. Tracking light is scanned into the real world environment, which includes at least one detector pair. A first time and a second time at which the tracking light impinges on the first detector is detected, in which the first time and second time occurs within adjacent scan lines. A time at which a horizontal scan line edge (e.g., beginning of scan line or end of scan line) is encountered is derived as occurring one half way between the first time and the second time. The horizontal location of the first detector then is determined within a specific scan line inferring the scan line edge time. The vertical location of the detector is determined within a scan frame by measuring time duration using the beginning of the frame. By determining a location independently from the temporal resolution of the augmented imaging system, the temporal location of the detector is identified to a sub-pixel/sub-line precision.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: March 15, 2005
    Assignee: University of Washington
    Inventors: Winyu Chinthammit, Eric Seibel, Thomas A Furness, III
  • Publication number: 20050015120
    Abstract: In one aspect, the invention provides vision prosthesis systems. Exemplary vision prosthesis systems of the invention comprise a light energy generator operably connected to a wearable head piece comprising a device for directing light energy produced by the light energy generator onto a mammalian retina, wherein the light energy generator is tuned to emit light energy of sufficient power to modulate neural activity in the retina. In another aspect, the invention provides methods for irradiating neurons in the retina of the mammalian eye by directing light energy produced by a light energy generator onto a mammalian retina. The methods of the invention may be used to directly modulate the activity of retinal neurons or to introduce molecules into retinal cells.
    Type: Application
    Filed: July 9, 2004
    Publication date: January 20, 2005
    Inventors: Eric Seibel, Thomas Reh, Blake Miller
  • Publication number: 20040254474
    Abstract: An optical fiber scanner is used for multiphoton excitation imaging, optical coherence tomography, or for confocal imaging in which transverse scans are carried out at a plurality of successively different depths within tissue. The optical fiber scanner is implemented as a scanning endoscope using a cantilevered optical fiber that is driven into resonance or near resonance by an actuator. The actuator is energized with drive signals that cause the optical fiber to scan in a desired pattern at successively different depths as the depth of the focal point is changed. Various techniques can be employed for depth focus tracking at a rate that is much slower than the transverse scanning carried out by the vibrating optical fiber. The optical fiber scanner can be used for confocal imaging, multiphoton fluorescence imaging, nonlinear harmonic generation imaging, or in an OCT system that includes a phase or frequency modulator and delay line.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 16, 2004
    Inventors: Eric Seibel, Xingde Li, Xiumei Liu
  • Publication number: 20040080467
    Abstract: A virtual image is registered among a perceived real world background. Tracking light is scanned into the real world environment, which includes at least one detector pair. A first time and a second time at which the tracking light impinges on the first detector is detected, in which the first time and second time occurs within adjacent scan lines. A time at which a horizontal scan line edge (e.g., beginning of scan line or end of scan line) is encountered is derived as occurring one half way between the first time and the second time. The horizontal location of the first detector then is determined within a specific scan line inferring the scan line edge time. The vertical location of the detector is determined within a scan frame by measuring time duration using the beginning of the frame. By determining a location independently from the temporal resolution of the augmented imaging system, the temporal location of the detector is identified to a sub-pixel/sub-line precision.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 29, 2004
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Winyu Chinthammit, Eric Seibel, Thomas A. Furness