Patents by Inventor Eric Seng

Eric Seng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070194415
    Abstract: Semiconductor device assemblies include at least first and second semiconductor dice disposed in a face-to-face configuration. At least some of a plurality of conductive structures are electrically and structurally coupled to a bond pad of the first semiconductor die and a bond pad of the second semiconductor die. A first end of each of a plurality of laterally extending conductive elements may be structurally and electrically coupled to a conductive terminal of a substrate, and a second end of each laterally extending conductive element is structurally and electrically coupled to at least one of a bond pad of the first semiconductor die, a bond pad of the second semiconductor die, and a conductive structure. Methods include the fabrication of such assemblies. Electronic systems include at least one electronic signal processing device, at least one input or output device, and at least one memory device including such a semiconductor device assembly.
    Type: Application
    Filed: February 22, 2006
    Publication date: August 23, 2007
    Inventors: Eric Seng, Lee Kuan
  • Publication number: 20060194373
    Abstract: A method for assembling one or more semiconductor devices with an interposer includes positioning the one or more semiconductor devices within a receptacle that extends through the interposer, on a retention element that extends over at least a portion of the receptacle. Material may be introduced between at least a portion of an outer periphery of the one or more semiconductor devices and an inner periphery of the interposer to facilitation securing of the one or more semiconductor devices in place relative to the interposer. The retention element may be removed from the semiconductor devices. Once the one or more semiconductor devices are in place, they may be electrically connected to the interposer.
    Type: Application
    Filed: April 25, 2006
    Publication date: August 31, 2006
    Inventors: Setho Fee, Lim Chye, Steven Heppler, Leng Yin, Keith Tan, Patrick Guay, Edmund Tian, Yap Eng, Eric Seng
  • Publication number: 20060035503
    Abstract: Invertible microfeature device packages and associated methods for manufacture and use are disclosed. A package in accordance with one embodiment includes a microfeature device having a plurality of device contacts, and a conductive structure electrically connected to the contacts. The conductive structure can have first and second package contacts accessible for electrical coupling to at least one device external to the package, with the first package contacts accessible from a first direction and the second package contacts configured to receive solder balls and accessible from a second direction opposite the first. An encapsulant can be disposed adjacent to the microfeature device and the conductive structure and can have apertures aligned with the second package contacts to contain solder balls carried by the second package contacts.
    Type: Application
    Filed: August 15, 2005
    Publication date: February 16, 2006
    Inventors: Eric Seng, Lim Chye
  • Publication number: 20060017177
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, a microelectronic component assembly includes a microelectronic component, a substrate, and at least one bond wire. The substrate has a reduced-thickness base adjacent terminals of the microelectronic component and a body having a contact surface spaced farther from the microelectronic component than a bond pad surface of the base. The bond wire couples the microelectronic component to a bond pad carried by the bond pad surface and has a maximum height outwardly from the microelectronic component that is no greater than the height of the contact surface from the microelectronic component.
    Type: Application
    Filed: August 30, 2004
    Publication date: January 26, 2006
    Inventors: Eric Seng, Edmund Chung
  • Publication number: 20050093174
    Abstract: The present disclosure describes microfeature workpieces, microelectronic component packages, and methods of forming microelectronic components and microelectronic component packages. In one particular example, a microelectronic component package includes a substrate and a microelectronic component that has a first surface with a surface area greater than that of a second surface. A cementitious material, e.g., a die attach paste, may attach the second surface of the microelectronic component to a mounting surface of the substrate, with the cementitious material extending outwardly beyond a perimeter of the second surface and covering a surface area of the mounting surface that is no greater than the surface area of the first surface. Such a microelectronic component package may be formed with a smaller footprint or, alternatively, may include a microelectronic component having larger dimensions in a microelectronic component package of the same size.
    Type: Application
    Filed: April 5, 2004
    Publication date: May 5, 2005
    Inventor: Eric Seng
  • Publication number: 20050046000
    Abstract: Invertible microfeature device packages and associated methods for manufacture and use are disclosed. A package in accordance with one embodiment includes a microfeature device having a plurality of device contacts, and a conductive structure electrically connected to the contacts. The conductive structure can have first and second package contacts accessible for electrical coupling to at least one device external to the package, with the first package contacts accessible from a first direction and the second package contacts configured to receive solder balls and accessible from a second direction opposite the first. An encapsulant can be disposed adjacent to the microfeature device and the conductive structure and can have apertures aligned with the second package contacts to contain solder balls carried by the second package contacts.
    Type: Application
    Filed: August 29, 2003
    Publication date: March 3, 2005
    Inventors: Eric Seng, Lim Chye
  • Publication number: 20050023655
    Abstract: Microelectronic devices in accordance with aspects of the invention may include a die, a plurality of lead fingers and an encapsulant which may bond the lead fingers and the die. In one method of the invention, a lead frame and a die are releasably attached to a support, an encapsulant is applied, and the support can be removed to expose back contacts of the lead fingers and a back surface of the die. One microelectronic device assembly of the invention includes a die having an exposed back die surface; a plurality of electrical leads, each of which includes front and back electrical contacts; bonding wires electrically coupling the die to the electrical leads; and an encapsulant bonded to the die and the electrical leads. The rear electrical contacts of the electrical leads may be exposed adjacent a back surface of the encapsulant in a staggered array.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 3, 2005
    Inventors: Setho Fee, Lim Chye, Eric Seng
  • Patent number: 6108806
    Abstract: A method of testing field programmable gate arrays (FPGAs) includes establishing a first group of programmable logic blocks as test pattern generators or output response analyzers and a second group of programmable logic blocks as blocks under test. This is followed by generating test patterns and comparing outputs of two blocks under test with one output response analyzer. Next is the combining of results of a plurality of output response analyzers utilizing an iterative comparator in order to produce a pass/fail indication. The method also includes the step of reconfiguring each block under test so that each block under test is tested in all possible modes of operation. Further, there follows the step of reversing programming of the groups of programmable logic blocks so that each programmable logic block is configured at least once as a block under test.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: August 22, 2000
    Assignees: Lucent Technologies Inc., University of Kentucky Research Foundation
    Inventors: Miron Abramovici, Eric Seng-Kar Lee, Charles Eugene Stroud