Patents by Inventor Eric Stephan ten Have

Eric Stephan ten Have has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973580
    Abstract: A redundant wavelength division multiplexing (WDM) device including a first common port which includes a collimator configured to transmit a first optical beam. The first beam includes a first plurality of optical signals. A second common port includes a collimator configured to transmit a second optical beam that includes a second plurality of optical signals. The second common port is spaced apart from the first common port and a plurality of filters define an optical path for each of the first optical beam and the second optical beam. Each filter is oriented to interact with each of the first optical beam and the second optical beam. A method of processing light includes transmitting one of the first optical signals of a first wavelength through a first filter and transmitting one of the second optical signals of the first wavelength through the first filter.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: April 30, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Andreas Matiss, Eric Stephan ten Have
  • Patent number: 11927804
    Abstract: A wavelength division multiplexing device includes an alignment substrate configured to provide alignment between optical components of the device. The device includes a plurality of collimating lenses, and the alignment substrate includes a plurality of aligners. Each of the aligners is configured to place a respective one of collimating lenses in a predetermined position and a predetermined orientation with respect to the other collimating lenses. The alignment substrate thereby provides passive alignment of the collimating lenses with a designed optical path. The substrate may also include visual alignment markings that provide an indication of the placement of multi-layer thin film filters so that the filters define an actual optical path in alignment with the designed optical path, and integrated optical waveguides that provide an optical beam to each of the collimating lenses.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: March 12, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventor: Eric Stephan ten Have
  • Publication number: 20230361878
    Abstract: Network access devices and methods for increasing availability in an optical network. The network access device includes a first common port configured to receive a primary optical beam, a second common port configured to receive a secondary optical beam, a wavelength division multiplexing device, and an optical coupling device. When operating in a normal state, the optical coupling device provides at least a portion of the primary optical beam to the wavelength division multiplexing device. In response to a problem being detected in the primary distribution cable, the optical coupling device provides at least a portion of the secondary optical beam to the wavelength division multiplexing device. Problems in the primary distribution cable may be detected by a sensing device in the network access device based on a loss of signal at the first common port.
    Type: Application
    Filed: May 1, 2023
    Publication date: November 9, 2023
    Inventors: Martin Hempstead, Andreas Matiss, Martin Spreemann, Eric Stephan ten Have, Peter Gerard Wigley
  • Patent number: 11777635
    Abstract: A wavelength division multiplexing device includes a common port and a plurality of filters that define an optical path. The common port includes a collimator that transmits an optical beam including a plurality of optical signals. Each optical signal is associated with a different wavelength range, and each filter includes an interface having a radius of curvature. One filter is configured to receive the optical beam from the collimator, transmit an optical signal through its interface, and reflect the remaining portion of the optical beam toward another filter. The common collimator and filter are configured so that the reflected portion of the optical beam has a beam waist located in the optical path midway between the filters, and a wavefront radius of curvature at the other filter that matches the filter radius of curvature of that filter. A method of processing light in such a device is also disclosed.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: October 3, 2023
    Assignee: Corning Research & Development Corporation
    Inventor: Eric Stephan ten Have
  • Patent number: 11766702
    Abstract: A spray nozzle, systems and methods for cleaning at least one optical fiber end face of an optical fiber connector. The nozzle includes a housing body with a first end portion and a second end portion. A discharge passage carries an atomized mixture of cleaning fluid and positively pressurized air from the first end portion to a discharge opening at the second end portion. A vacuum return passage communicates with the discharge passage proximate the second end portion. The return passage receives the atomized mixture of cleaning fluid and positively pressurized air as well as contaminants removed from the optical fiber end face. A portion of the atomized mixture of cleaning fluid and positively pressurized air is diverted from the discharge passage to control the amount of the atomized mixture being directed at the optical fiber end face.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: September 26, 2023
    Assignee: Corning Research & Development Corporation
    Inventors: Keith Mitchell Hill, Eric Stephan ten Have
  • Publication number: 20230288646
    Abstract: Optical devices including an optical splitter and a duplex optical connector are disclosed. In one embodiment, an optical device includes an optical splitter having an input, a network output, and a pass-through output, wherein the optical splitter is configured to split an input signal received at the input into a network optical signal at the network output and a pass-through output signal at the pass-through output. The optical device further includes a duplex connector having an input connection point and a pass-through connection point, an input waveguide optically coupling the input connection point to the input of the optical splitter, and a pass-through waveguide optically coupling the pass-through connection point to the pass-through output of the optical splitter.
    Type: Application
    Filed: April 26, 2023
    Publication date: September 14, 2023
    Inventors: Michael De Jong, Carmi Shapira, Eric Stephan ten Have
  • Publication number: 20230280537
    Abstract: A wavelength division multiplexing device includes an alignment substrate configured to provide alignment between optical components of the device. The device includes a plurality of collimating lenses, and the alignment substrate includes a plurality of aligners. Each of the aligners is configured to place a respective one of collimating lenses in a predetermined position and a predetermined orientation with respect to the other collimating lenses. The alignment substrate thereby provides passive alignment of the collimating lenses with a designed optical path. The substrate may also include visual alignment markings that provide an indication of the placement of multi-layer thin film filters so that the filters define an actual optical path in alignment with the designed optical path, and integrated optical waveguides that provide an optical beam to each of the collimating lenses.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 7, 2023
    Inventor: Eric Stephan ten Have
  • Publication number: 20230171526
    Abstract: Field-configurable optical devices and methods are disclosed. In one example, a field-configurable optical device includes a housing defining an enclosure, a splitter disposed within the enclosure and having one or more splitter inputs and a plurality of splitter outputs, and a plurality of couplers within the enclosure. The field-configurable optical device includes a plurality of sets of split-ratio selection ports located at an exterior of the housing. The plurality of sets of split-ratio selection ports and the plurality of couplers are configured such that the power split ratio of the field-configurable optical device is established by connecting an input optical fiber to the coupler input port of a selected set of split-ratio selection ports, and connecting a pass-through optical fiber to the coupler pass-through port of the selected set of split-ratio selection ports.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 1, 2023
    Inventors: Michael De Jong, Andreas Matiss, Carmi Shapire, Eric Stephan ten Have
  • Publication number: 20230168459
    Abstract: Field-configurable optical devices and methods are disclosed. In one example, a field-configurable optical device includes a housing defining an enclosure, an input port located at the housing, a pass-through port located at the housing, a plurality of output ports located at the housing, a splitter disposed within the enclosure, a plurality of couplers within the enclosure, each coupler including an input, a first output, and a second output. Each coupler has a power splitting ratio between the first output and the second output that is different from the other couplers. An input port fiber optic jumper assembly within the enclosure. A pass-through port fiber optic jumper assembly is within the enclosure. Moving the input port fiber optic jumper assembly and the pass-through port fiber optic jumper assembly from a first coupler to a second coupler of the plurality of couplers changes the power splitting ratio of the field-configurable optical device.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 1, 2023
    Inventors: Pinhas Yehuda Rosenfelder, Carmi Shapira, Eric Stephan ten Have
  • Publication number: 20230107512
    Abstract: A redundant wavelength division multiplexing (WDM) device including a first common port which includes a collimator configured to transmit a first optical beam. The first beam includes a first plurality of optical signals. A second common port includes a collimator configured to transmit a second optical beam that includes a second plurality of optical signals. The second common port is spaced apart from the first common port and a plurality of filters define an optical path for each of the first optical beam and the second optical beam. Each filter is oriented to interact with each of the first optical beam and the second optical beam. A method of processing light includes transmitting one of the first optical signals of a first wavelength through a first filter and transmitting one of the second optical signals of the first wavelength through the first filter.
    Type: Application
    Filed: September 12, 2022
    Publication date: April 6, 2023
    Inventors: Andreas Matiss, Eric Stephan ten Have
  • Publication number: 20230063431
    Abstract: A wavelength division multiplexing device includes a common port and a plurality of filters that define an optical path. The common port includes a collimator that transmits an optical beam including a plurality of optical signals. Each optical signal is associated with a different wavelength range, and each filter includes an interface having a radius of curvature. One filter is configured to receive the optical beam from the collimator, transmit an optical signal through its interface, and reflect the remaining portion of the optical beam toward another filter. The common collimator and filter are configured so that the reflected portion of the optical beam has a beam waist located in the optical path midway between the filters, and a wavefront radius of curvature at the other filter that matches the filter radius of curvature of that filter. A method of processing light in such a device is also disclosed.
    Type: Application
    Filed: November 10, 2021
    Publication date: March 2, 2023
    Inventor: Eric Stephan ten Have
  • Publication number: 20210101167
    Abstract: A spray nozzle, systems and methods for cleaning at least one optical fiber end face of an optical fiber connector. The nozzle includes a housing body with a first end portion and a second end portion. A discharge passage carries an atomized mixture of cleaning fluid and positively pressurized air from the first end portion to a discharge opening at the second end portion. A vacuum return passage communicates with the discharge passage proximate the second end portion. The return passage receives the atomized mixture of cleaning fluid and positively pressurized air as well as contaminants removed from the optical fiber end face. A portion of the atomized mixture of cleaning fluid and positively pressurized air is diverted from the discharge passage to control the amount of the atomized mixture being directed at the optical fiber end face.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 8, 2021
    Inventors: Keith Mitchell Hill, Eric Stephan ten Have
  • Publication number: 20210080658
    Abstract: A fiber optic dust cap is provided for a fiber optic connector having a connector housing and a ferrule extending therefrom and terminating at a ferrule end face. The fiber optic dust cap includes a hollow body including a front end, a rear end, and, a bore extending therebetween. At least a first portion of the bore extends along a longitudinal axis and is configured to receive the connector housing, and at least a second portion of the bore is configured to be radially spaced apart from the ferrule. The fiber optic dust cap also includes a transparent window positioned over the bore and configured to be longitudinally spaced apart from the ferrule when the connector housing is received by at least the first portion of the bore. A method of inspecting a ferrule end face through the dust cap is also disclosed.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Martin Hempstead, Wolf Peter Kluwe, Eric Stephan ten Have
  • Patent number: 10545298
    Abstract: A traceable fiber optic cable assembly with an illumination structure and tracing optical fibers for carrying light received from a light launch device is disclosed herein. The traceable fiber optic cable assembly and light launch device provide easy tracing of the traceable fiber optic cable assembly using fiber optic tracing signals. Further, the launch connector is easily attached to and removed from the fiber optic connector with repeatable and reliable alignment of optic fibers, even when the fiber optic connector is mechanically and/or optically engaged with a network component. The fiber optic connectors are configured to efficiently illuminate an exterior of the connector for effective visibility for a user to quickly locate the fiber optic connector.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: January 28, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Anthony Sebastian Bauco, Douglas Llewellyn Butler, Ashley Wesley Jones, Jason Clay Lail, Eric Stephan ten Have
  • Patent number: 10429597
    Abstract: Interposer assemblies and arrangements for coupling at least one optical fiber to at least one optoelectronic device are disclosed. Interposer assemblies comprise an interposer including at least one optical waveguide comprising a first end and a second end, and a substrate comprising the at least one optoelectronic device, at least one optical receiving/emitting element and at least one optical channel. The interposer and the substrate are in optical communication so that light coupled out of the at least one optical waveguide is coupled in the at least one optical receiving/emitting element and/or light coupled out of the at least one optical receiving/emitting element is coupled in the at least one optical waveguide of the interposer.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 1, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Eric Stephan ten Have, Andrey Kobyakov
  • Patent number: 10222561
    Abstract: A light launch device for transmitting light into a traceable fiber optic cable assembly with tracing optical fibers is disclosed herein. The traceable fiber optic cable assembly and light launch device provide easy tracing of the traceable fiber optic cable assembly using fiber optic tracing signals. Further, the launch connector is easily attached to and removed from the fiber optic connector with repeatable and reliable alignment of optic fibers, even when the fiber optic connector is mechanically and/or optically engaged with a network component. The fiber optic connectors are configured to efficiently illuminate an exterior of the connector for effective visibility for a user to quickly locate the fiber optic connector.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 5, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Anthony Sebastian Bauco, Douglas Llewellyn Butler, Ashley Wesley Jones, Jason Clay Lail, Eric Stephan ten Have
  • Patent number: 10222560
    Abstract: A cable tracing system includes a fiber optic connector with a connector fiber guide. The connector fiber guide includes a planar surface, a launch opening defined in the planar surface, and at least one alignment surface proximate the planar surface. The connector also includes a tracing optical fiber with a first launch end positioned within the launch opening of the fiber guide. The tracing optical fiber is accessible from an exterior of the housing for receiving an optical tracing signal from a launch optical fiber. The alignment surface is configured to axially align the launch optical fiber with the first tracing optical fiber.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 5, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Anthony Sebastian Bauco, Douglas Llewellyn Butler, Ashley Wesley Jones, Jason Clay Lail, Eric Stephan ten Have
  • Patent number: 10185111
    Abstract: A traceable cable assembly includes a traceable cable having at least one data transmission element, a jacket at least partially surrounding the data transmission element, and first and second tracing optical fibers extending along at least a portion of a length of the traceable cable. The traceable cable assembly also includes a connector provided at each end of the traceable cable. The first and second tracing optical fibers each have a light launch end and a light emission end. The light launch ends of the first and second tracing optical fibers each include a bend. The bend allows for launching of light into the light launch ends without disengaging the first or second connectors from corresponding connector receptacles.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Anthony Sebastian Bauco, Douglas Llewellyn Butler, Ashley Wesley Jones, Jason Clay Lail, Eric Stephan ten Have
  • Publication number: 20180364426
    Abstract: Interposer assemblies and arrangements for coupling at least one optical fiber to at least one optoelectronic device are disclosed. Interposer assemblies comprise an interposer including at least one optical waveguide comprising a first end and a second end, and a substrate comprising the at least one optoelectronic device, at least one optical receiving/emitting element and at least one optical channel. The interposer and the substrate are in optical communication so that light coupled out of the at least one optical waveguide is coupled in the at least one optical receiving/emitting element and/or light coupled out of the at least one optical receiving/emitting element is coupled in the at least one optical waveguide of the interposer.
    Type: Application
    Filed: August 28, 2018
    Publication date: December 20, 2018
    Inventors: Eric Stephan ten Have, Andrey Kobyakov
  • Patent number: 10126511
    Abstract: A fiber coupling device comprising a mounting substrate, at least one optoelectronic and/or photonic chip and at least one first fiber coupling element for coupling an optical fiber to the fiber coupling device is disclosed. The optoelectronic and/or photonic chip has a main surface and comprises an optoelectronic and/or photonic active element couplable to a fiber end-piece of a respective optical fiber. The fiber coupling device further comprises at least one second fiber coupling element which is designed to contact and/or engage with a fiber end-piece of an optical fiber and which is mounted to the main surface of the at least one optoelectronic and/or photonic chip in a position aligned relative to the active element.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: November 13, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Sören Böldicke, Martin Spreemann, Eric Stephan ten Have, Gary Richard Trott