Patents by Inventor Eric Surawski

Eric Surawski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200140108
    Abstract: Aircraft air separation systems having a compressed air source arranged to supply compressed air, an air separation module arranged to receive air from the compressed air source, the air separation module arranged to separate air into nitrogen enriched air and oxygen enriched air, wherein the nitrogen enriched air is supplied to a fuel tank of the aircraft, and a source of mixing air arranged to fluidly supply the mixing air at a location between the compressed air source and the air separation module such that the mixing air is selectively mixed with the compressed air to generate treated air that is supplied to the air separation module.
    Type: Application
    Filed: August 20, 2019
    Publication date: May 7, 2020
    Inventors: Paul M. D'Orlando, Eric Surawski
  • Patent number: 10640227
    Abstract: Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and an inert gas recycling system located downstream of the catalytic reactor and upstream of the fuel tank, wherein the inert gas recycling system is arranged to direct a portion of the inert gas to the catalytic reactor.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: May 5, 2020
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Lance L. Smith, Eric Surawski
  • Publication number: 20200108944
    Abstract: Fuel tank inerting systems for aircraft are described. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out an inert gas and a byproduct, a reheater arranged between the catalytic reactor and the heat exchanger, and a recirculation loop configured to extract air from downstream of the heat exchanger, pass the extracted air through the reheater, and inject reheated air upstream of the catalytic reactor.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventors: Gregory L. DeFrancesco, Eric Surawski, Kevin P. Aceves
  • Patent number: 10569896
    Abstract: A fuel tank inerting system is disclosed. In addition to a fuel tank, the system includes a catalytic reactor with an inlet, an outlet, a reactive flow path between the inlet and the outlet, and a catalyst on the reactive flow path. The catalytic reactor is arranged to receive fuel from the fuel tank and air from an air source, and to react the fuel and air along the reactive flow path to generate an inert gas. The system also includes an inert gas flow path from the catalytic reactor to the fuel tank. The system also includes (a) an air distributor in the catalytic reactor arranged to distribute air along the reactive flow path, or (b) non-uniform catalyst loading or non-uniform catalyst composition along the reactive flow path, or both (a) and (b).
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 25, 2020
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Sean C. Emerson, Barbara Brenda Botros, Zissis A. Dardas, Lance L. Smith, Eric Surawski, Catherine Thibaud
  • Publication number: 20190389593
    Abstract: Fuel tank inerting systems are provided. The systems include a fuel tank, an air source arranged to supply air into a reactive flow path, a catalytic reactor having a plurality of sub-reactors along the flow path, and a heat exchanger. The sub-reactors are arranged relative to the heat exchanger such that the flow path passes through at least a portion of the heat exchanger between two sub-reactors along the flow path. At least one fuel injector is arranged relative to at least one sub-reactor. The fuel injector is configured to inject fuel into the flow path at at least one of upstream of and in the respective at least one sub-reactor to generate a fuel-air mixture. A fuel tank ullage supply line fluidly connects the flow path to the fuel tank to supply an inert gas to a ullage of the fuel tank.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 26, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Robert R. Hebert, Randolph Carlton McGee, Allen Murray, Eric Surawski, Joseph Turney
  • Patent number: 10479522
    Abstract: An internal recycle reactor for catalytic inerting has a monolithic body having a motive fluid duct, a suction chamber, a mixing region, a reactor section, an outlet, and a recycle passage. The suction chamber includes a suction chamber inlet. The mixing region is configured to receive gaseous fluids from the motive fluid duct and the suction chamber inlet to produce a gaseous mixture. The reactor section includes a catalyst and is configured to receive the gaseous mixture from the mixing region. The outlet is configured to deliver an exhaust gas from the reactor section and the recycle passage is configured to deliver a portion of the exhaust gas to the suction chamber inlet.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: November 19, 2019
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Sean C. Emerson, Zissis A. Dardas, Randolph Carlton McGee, Eric Surawski
  • Publication number: 20190308740
    Abstract: A fuel tank inerting system includes a primary catalytic reactor comprising an inlet, an outlet, a reactive flow path between the inlet and the outlet, and a catalyst on the reactive flow path. The catalytic reactor is arranged to receive fuel from the fuel tank and air from an air source that are mixed to form a combined flow, and to react the combined flow along the reactive flow path to generate an inert gas. The system also includes an input sensor that measures a property of the combined flow before it enters the primary catalytic reactor and an output sensor that measures the property of the combined flow after it exits the primary catalytic reactor.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Randolph Carlton McGee, Eric Surawski
  • Publication number: 20190300196
    Abstract: A gas inerting system for an aircraft includes a fuel tank configured to contain a liquid fuel, a fuel vaporization system in fluid communication with the fuel tank and configured to receive the liquid fuel from the fuel tank, a source of air in fluid communication with the fuel vaporization system and configured to deliver air into the liquid fuel to produce the fuel vapor, a heat exchanger in fluid communication with the source of air at a location upstream of the fuel vaporization system, and a catalytic oxidation unit in fluid communication with the fuel vaporization system. The heat exchanger is configured to cool the air from the air source. A fluid connection is configured to deliver the fuel vapor to the catalytic oxidation unit.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventor: Eric Surawski
  • Publication number: 20190291887
    Abstract: A catalytic oxidation system for generating inert gas includes a catalytic oxidation unit, which includes a catalyst oriented between an inlet and an outlet of the catalytic oxidation system, a first temperature sensor in operable communication with the catalyst, and a second temperature sensor in operable communication with the catalyst. The first temperature sensor is nearer to the inlet than the second temperature sensor and the second temperature sensor is nearer to the outlet than the first temperature sensor.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Eric Surawski, Joseph V. Mantese
  • Publication number: 20190291886
    Abstract: An internal recycle reactor for catalytic inerting has a monolithic body having a motive fluid duct, a suction chamber, a mixing region, a reactor section, an outlet, and a recycle passage. The suction chamber includes a suction chamber inlet. The mixing region is configured to receive gaseous fluids from the motive fluid duct and the suction chamber inlet to produce a gaseous mixture. The reactor section includes a catalyst and is configured to receive the gaseous mixture from the mixing region. The outlet is configured to deliver an exhaust gas from the reactor section and the recycle passage is configured to deliver a portion of the exhaust gas to the suction chamber inlet.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Randolph Carlton McGee, Eric Surawski
  • Publication number: 20190283898
    Abstract: An aircraft inert gas generating system includes a fuel source configured to supply fuel, a stream of reaction air having a first temperature, an air-fuel mixing unit configured to receive an amount of the fuel and an amount of the reaction air stream to create an air-fuel mixture, and a catalytic oxidation unit configured to receive and react the air-fuel mixture. The stream of reaction air includes an amount of mixing air from a mixing air source, and the mixing air source includes a primary heat exchanger of an aircraft ram circuit and a cooling air extraction element proximate the heat exchanger. The mixing air can alternatively include cool air from a heat sink air source.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Inventors: Paul M. D'Orlando, Eric Surawski
  • Publication number: 20190283895
    Abstract: A method for startup of a catalytic oxidation unit includes flowing air from an air source into the catalytic oxidation unit, recycling air from an outlet of the catalytic oxidation unit to an inlet of the catalytic oxidation unit through a recycle duct, and flowing a fuel from a fuel source into the catalytic oxidation to cause a catalytic reaction.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 19, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Robert R. Hebert, Allen Murray, Eric Surawski, Randolph Carlton McGee
  • Publication number: 20190283897
    Abstract: An aircraft inert gas generating system includes a fuel source, an air-fuel mixing unit configured to receive an amount of the fuel and an amount of air an create an air-fuel mixture, and a catalytic oxidation unit downstream of the air-fuel mixing unit and configured to receive and react the air-fuel mixture. The system further includes a condenser downstream of and in flow communication with the catalytic oxidation unit and a cabin exhaust circuit in flow communication with the condenser and configured to provide cabin exhaust air at a first temperature to the condenser. In an alternative embodiment, a pressurized air circuit can provide a stream of cooling air to the condenser. The pressurized air circuit includes a source of pressurized air and a chiller downstream of the source and configured to bring the pressurized air to a first temperature.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Inventors: Paul M. D'Orlando, Eric Surawski
  • Publication number: 20190185176
    Abstract: A fuel tank inerting system is disclosed. In addition to a fuel tank, the system includes a catalytic reactor with an inlet, an outlet, a reactive flow path between the inlet and the outlet, and a catalyst on the reactive flow path. The catalytic reactor is arranged to receive fuel from the fuel tank and air from an air source, and to react the fuel and air along the reactive flow path to generate an inert gas. The system also includes an inert gas flow path from the catalytic reactor to the fuel tank. The system also includes (a) an air distributor in the catalytic reactor arranged to distribute air along the reactive flow path, or (b) non-uniform catalyst loading or non-uniform catalyst composition along the reactive flow path, or both (a) and (b).
    Type: Application
    Filed: December 20, 2017
    Publication date: June 20, 2019
    Inventors: Sean C. Emerson, Barbara Brenda Botros, Zissis A. Dardas, Lance L. Smith, Eric Surawski, Catherine Thibaud
  • Publication number: 20180312263
    Abstract: An environmental control system of an aircraft includes a ram air circuit including a ram air shell having a heat exchanger positioned therein and a dehumidification system arranged in fluid communication with the ram air circuit. A plurality of expansion devices is arranged in fluid communication with the ram air circuit and the dehumidification system. At least one of the expansion devices is a simple cycle expansion device.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 1, 2018
    Inventors: Donald E. Army, Louis J. Bruno, Sherif M. Kandil, Matthew Pess, Robert C. Roy, Eric Surawski, Joseph Turney, Lawrence E. Zeidner, Paul M. D'Orlando
  • Publication number: 20180222598
    Abstract: Fuel tank inerting and fire suppression systems and methods for an aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and a fire suppression inert gas supply system arranged to direct the inert gas to a fire suppression system, wherein the fire suppression inert gas supply system includes a fire suppression inert gas supply controller to control a flow of inert gas to the fuel tank and the fire suppression system.
    Type: Application
    Filed: February 7, 2018
    Publication date: August 9, 2018
    Inventor: Eric Surawski
  • Publication number: 20180155049
    Abstract: Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and an inert gas recycling system located downstream of the catalytic reactor and upstream of the fuel tank, wherein the inert gas recycling system is arranged to direct a portion of the inert gas to the catalytic reactor.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 7, 2018
    Inventors: Lance L. Smith, Eric Surawski
  • Publication number: 20180155050
    Abstract: Fuel tank inerting systems and methods for an aircraft. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and a heating duct thermally connected to the catalytic reactor and arranged in thermal communication with the first source to provide heat to the first source to generate the first reactant.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 7, 2018
    Inventors: Eric Surawski, Brian St. Rock
  • Publication number: 20180155048
    Abstract: Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank and arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first and second reactants from the first and second sources, respectively, to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and downstream of the catalytic reactor, the heat exchanger arranged to at least one of condense and cool an output from the catalytic reactor to separate out an inert gas and a byproduct, and a cool air source arranged to supply cool air to the heat exchanger and then the catalytic reactor to provide thermal control of the catalytic reactor.
    Type: Application
    Filed: January 26, 2018
    Publication date: June 7, 2018
    Inventor: Eric Surawski
  • Publication number: 20180155047
    Abstract: Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and a heating duct connected to the second reactant source, wherein a thermal energy of the second reactant is employed to heat the first reactant source.
    Type: Application
    Filed: January 25, 2018
    Publication date: June 7, 2018
    Inventor: Eric Surawski