Patents by Inventor Eric Timothy Green

Eric Timothy Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220085889
    Abstract: A pluggable bidirectional optical amplifier module may include preamp and booster optical amplifiers and a housing. The preamp optical amplifier may be configured to amplify optical signals traveling in a first direction. The booster optical amplifier may be configured to amplify optical signals traveling in a second direction. The housing may at least partially enclose the preamp optical amplifier and the booster optical amplifier. The pluggable bidirectional optical amplifier module may have a mechanical form factor that is compliant with a pluggable communication module form factor MSA. A colorless mux/demux cable assembly may be operated with the pluggable bidirectional optical amplifier. The colorless mux/demux cable assembly may include a 1:N optical splitter a N:1 optical combiner coupled side-by-side to the 1:N optical splitter, a first fiber optic cable optic cable, and a second fiber optic cable.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 17, 2022
    Inventors: Martin R. Williams, Yajun Wang, Eric Timothy Green, Aravanan Gurusami, Deepak Devicharan, Timothy Kent Zahnley, Mike Burgess
  • Publication number: 20210281323
    Abstract: A pluggable bidirectional optical amplifier module may include preamp and booster optical amplifiers and a housing. The preamp optical amplifier may be configured to amplify optical signals traveling in a first direction. The booster optical amplifier may be configured to amplify optical signals traveling in a second direction. The housing may at least partially enclose the preamp optical amplifier and the booster optical amplifier. The pluggable bidirectional optical amplifier module may have a mechanical form factor that is compliant with a pluggable communication module form factor MSA. A colorless mux/demux cable assembly may be operated with the pluggable bidirectional optical amplifier. The colorless mux/demux cable assembly may include a 1:N optical splitter a N:1 optical combiner coupled side-by-side to the 1:N optical splitter, a first fiber optic cable optic cable, and a second fiber optic cable.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 9, 2021
    Inventors: Martin R. Williams, Yajun Wang, Eric Timothy Green, Aravanan Gurusami, Deepak Devicharan, Timothy Kent Zahnley, Mike Burgess
  • Patent number: 10749309
    Abstract: A fiber-based optical amplifier is assembled in a compact configuration by utilizing a flexible substrate to support the amplifying fiber as flat coils that are “spun” onto the substrate. The supporting structure for the amplifying fiber is configured to define the minimal acceptable bend radius for the fiber, as well as the maximum diameter that fits within the overall dimensions of the amplifier package. A pressure-sensitive adhesive coating is applied to the flexible substrate to hold the fiber in place. By using a flexible material with an acceptable insulative quality (such as a polyimide), further compactness in the final assembly is achieved by locating the electronics in a space underneath the fiber enclosure.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: August 18, 2020
    Assignee: II-VI Incorporated
    Inventors: Eric Timothy Green, Daniel Christopher Myers, Todd Gregory Starner, Martin Richard Williams, Mark Filipowicz
  • Publication number: 20170317463
    Abstract: A fiber-based optical amplifier is assembled in a compact configuration by utilizing a flexible substrate to support the amplifying fiber as flat coils that are “spun” onto the substrate. The supporting structure for the amplifying fiber is configured to define the minimal acceptable bend radius for the fiber, as well as the maximum diameter that fits within the overall dimensions of the amplifier package. A pressure-sensitive adhesive coating is applied to the flexible substrate to hold the fiber in place. By using a flexible material with an acceptable insulative quality (such as a polyimide), further compactness in the final assembly is achieved by locating the electronics in a space underneath the fiber enclosure.
    Type: Application
    Filed: July 13, 2017
    Publication date: November 2, 2017
    Applicant: II-VI Incorporated
    Inventors: Eric Timothy Green, Daniel Christopher Myers, Todd Gregory Starner, Martin Richard Williams, Mark Filipowicz
  • Patent number: 9806486
    Abstract: An optical amplifier module is configured as a multi-stage free-space optics arrangement, including at least an input stage and an output stage. The actual amplification is provided by a separate fiber-based component coupled to the module. A propagating optical input signal and pump light are provided to the input stage, with the amplified optical signal exiting the output stage. The necessary operations performed on the signal within each stage are provided by directing free-space beams through discrete optical components. The utilization of discrete optical components and free-space beams significantly reduces the number of fiber splices and other types of coupling connections required in prior art amplifier modules, allowing for an automated process to create a “pluggable” optical amplifier module of small form factor proportions.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 31, 2017
    Assignee: II-VI Incorporated
    Inventors: Mark H. Garrett, Aravanan Gurusami, Ian Peter McClean, Nadhum Zayer, Eric Timothy Green, Mark Filipowicz, Massimo Martinelli
  • Publication number: 20160276797
    Abstract: An optical amplifier module is configured as a multi-stage free-space optics arrangement, including at least an input stage and an output stage. The actual amplification is provided by a separate fiber-based component coupled to the module. A propagating optical input signal and pump light are provided to the input stage, with the amplified optical signal exiting the output stage. The necessary operations performed on the signal within each stage are provided by directing free-space beams through discrete optical components. The utilization of discrete optical components and free-space beams significantly reduces the number of fiber splices and other types of coupling connections required in prior art amplifier modules, allowing for an automated process to create a “pluggable” optical amplifier module of small form factor proportions.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 22, 2016
    Applicant: II-VI Incorporated
    Inventors: Mark H. Garrett, Aravanan Gurusami, Ian Peter McClean, Nadhum Zayer, Eric Timothy Green, Mark Filipowicz, Massimo Martinelli
  • Patent number: 6480661
    Abstract: The invention is an optical ADD/DROP filter suitable for dense wavelength division multiplexing/de-multiplexing. It comprises an optical bench having a longitudinal V-groove into which the optical components of the ADD/DROP filter are passively aligned and bonded. The bench further includes first and second pairs of opposed, spaced, vertical members at each end between which a fiber array block is inserted. In the method of constructing the ADD/DROP filter, an interference filter is bonded to a first collimating lens. Then, the first collimating lens with the interference filter attached thereto and a second collimating lens are placed in the V-groove of the bench where they are passively aligned. The two collimating lenses are then bonded to the bench. Fiber array substrates are inserted between the pairs of opposed, spaced, vertical members and a UV transparent block is inserted on top of each fiber array between the corresponding pair of opposed, spaced, vertical members.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: November 12, 2002
    Assignee: The Whitaker Corporation
    Inventors: Michael Aaron Kadar-Kallen, Eric Timothy Green, Shan Zhong, Warren Hale Lewis
  • Publication number: 20010036352
    Abstract: The invention is an optical ADD/DROP filter suitable for dense wavelength division multiplexing/de-multiplexing. It comprises an optical bench having a longitudinal V-groove into which the optical components of the ADD/DROP filter are passively aligned and bonded. The bench further includes first and second pairs of opposed, spaced, vertical members at each end between which a fiber array block is inserted. In the method of constructing the ADD/DROP filter, an interference filter is bonded to a first collimating lens. Then, the first collimating lens with the interference filter attached thereto and a second collimating lens are placed in the V-groove of the bench where they are passively aligned. The two collimating lenses are then bonded to the bench. Fiber array substrates are inserted between the pairs of opposed, spaced, vertical members and a UV transparent block is inserted on top of each fiber array between the corresponding pair of opposed, spaced, vertical members.
    Type: Application
    Filed: February 22, 2001
    Publication date: November 1, 2001
    Inventors: Michael Aaron Kadar-Kallen, Eric Timothy Green, Shan Zhong, Warren Hale Lewis