Patents by Inventor Eric Upton

Eric Upton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922348
    Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models is generated by performing a training step on a corresponding one of the plurality of training sets of the plurality of medical scans. A set of abnormality data is generated by applying a subset of a set of inference functions on a new medical scan. The subset of the set of inference functions utilize the subset of the set of sub-models, and each of the set of abnormality data is generated as output of performing one of the subset of the set of inference functions. The multi-model medical scan analysis system is further operable to generate final abnormality data that includes a global probability indicating a probability that any abnormality is present based on the set of abnormality data.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: March 5, 2024
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20070103381
    Abstract: A three-dimensional holographic array of radio-frequency (RF) diffraction gratings, each of which has lengths of conductive and insulating fluid that are selected and adjusted to provide a desired diffraction effect on incident RF radiation. The three-dimensional array functions analogously to an optical hologram, and is programmable to provide desired refraction and focusing effects on multiple RF incident beams, which may be selectively directed to receivers or, if interferers, ignored. Because the gratings employ conductive and insulating fluids, the array can be reprogrammed in near real time to adapt to changes in the incident RF radiation.
    Type: Application
    Filed: October 19, 2005
    Publication date: May 10, 2007
    Inventor: Eric Upton
  • Publication number: 20060140563
    Abstract: The present invention provides systems and methods that employ a continuously variable optical delay line to introduce a delay into a transmitted optical signal. The delay line comprises a holey fiber configured in a spiral layout, wherein one end of the fiber is operative to a reflective fluid reservoir and the other end in operative to an input port. A segmented piezoelectric actuator is employed to position a reflective fluid within the fiber, utilizing a commutated technique that continuously moves the fluid. A signal received at the input port is routed through the holey fiber at an angle of incidence to achieve total internal reflection. The signal traverses towards the reflective fluid, and reflects back towards the input port after coming into contact with the fluid's surface. The delay introduced into the signal is a function of the distance traveled through the delay line.
    Type: Application
    Filed: February 17, 2006
    Publication date: June 29, 2006
    Applicant: Northrop Grumman Corporation
    Inventor: Eric Upton
  • Publication number: 20060140564
    Abstract: The present invention provides systems and methods that employ a continuously variable optical delay line to introduce a delay into a transmitted optical signal. The delay line comprises a holey fiber configured in a spiral layout, wherein one end of the fiber is operative to a reflective fluid reservoir and the other end in operative to an input port. A segmented piezoelectric actuator is employed to position a reflective fluid within the fiber, utilizing a commutated technique that continuously moves the fluid. A signal received at the input port is routed through the holey fiber at an angle of incidence to achieve total internal reflection. The signal traverses towards the reflective fluid, and reflects back towards the input port after coming into contact with the fluid's surface. The delay introduced into the signal is a function of the distance traveled through the delay line.
    Type: Application
    Filed: February 17, 2006
    Publication date: June 29, 2006
    Applicant: Northrop Grumman Corporation
    Inventor: Eric Upton
  • Publication number: 20050135529
    Abstract: A communications apparatus and method use tapped delay lines as multiplexers and demultiplexers. In one embodiment, a receiver (100) uses a tapped delay line (110) as a demultiplexer to acquire a burst communication at very high data rates in the range of 2.5 to 80 Gbps with low preamble overhead. A sliding window correlator (114) continually samples the delay line (110) to determine when a PN encoded word is contained therein. The transmission frequency is pre-acquired before any data is present through the use of a ring oscillator frequency calibration loop (130) that is imbedded within the tapped delay line (110).
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Inventors: Eric Upton, James Anderson, Edward Garber
  • Publication number: 20050031273
    Abstract: The present invention provides systems and methods that employ a continuously variable optical delay line to introduce a delay into a transmitted optical signal. The delay line comprises a holey fiber configured in a spiral layout, wherein one end of the fiber is operative to a reflective fluid reservoir and the other end in operative to an input port. A segmented piezoelectric actuator is employed to position a reflective fluid within the fiber, utilizing a commutated technique that continuously moves the fluid. A signal received at the input port is routed through the holey fiber at an angle of incidence to achieve total internal reflection. The signal traverses towards the reflective fluid, and reflects back towards the input port after coming into contact with the fluid's surface. The delay introduced into the signal is a function of the distance traveled through the delay line.
    Type: Application
    Filed: August 7, 2003
    Publication date: February 10, 2005
    Inventor: Eric Upton