Patents by Inventor Eric W. Beach

Eric W. Beach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7964919
    Abstract: An integrated circuit includes a first thin film resistor on a first dielectric layer. A first layer of interconnect conductors on the first dielectric layer includes a first and second interconnect conductors electrically contacting the first thin film resistor. A second dielectric layer is formed on the first dielectric layer. A second thin film resistor is formed on the second dielectric layer. A third dielectric layer is formed on the second dielectric layer. A second layer of interconnect conductors on the third dielectric layer includes a third interconnect conductor extending through an opening in the second and third dielectric layers to contact the first interconnect conductor, a fourth interconnect conductor extending through an opening in the second and third dielectric layers to contact the second interconnect conductor, and two interconnect conductors extending through openings in the third dielectric layer of the second thin film resistor.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: June 21, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Vladimir F. Drobny, Derek W. Robinson
  • Publication number: 20100258909
    Abstract: A resistor (14) and a resistive link (1,15) are provided in an integrated circuit structure, and a dielectric layer (30-2) is formed over the resistive link. The resistor and the resistive link are connected in parallel. The resistance of the resistor is trimmed by forming a cut entirely through the resistive link, by advancing a laser beam (3) through a trim region (4,4-1) of the resistive link in a direction at an angle in the range of approximately 0 to 60 degrees relative to a longitudinal axis of the resistive link so as to melt resistive link material. The advancing laser beam tends to sweep the melted material in the direction of beam movement. Re-solidified link debris accumulates sufficiently far apart and sufficiently far from a stub (15A) of the resistive link to prevent significant leakage current in the resistive link.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 14, 2010
    Inventors: Eric L. Hoyt, Eric W. Beach
  • Patent number: 7807540
    Abstract: An integrated circuit back end capacitor structure includes a first dielectric layer on a substrate, a thin film bottom plate on the first dielectric layer, and a second dielectric layer on the first dielectric layer and the bottom plate, and a thin film top plate disposed on the second dielectric layer. The thin film top plate and bottom plate are composed of thin film resistive layers, such as sichrome, which also are utilized to form back end thin film resistors having various properties. Interconnect conductors of a metallization layer contact the top and bottom plates through corresponding vias.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: October 5, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Eric W. Beach
  • Publication number: 20100151651
    Abstract: An integrated circuit back end capacitor structure includes a first dielectric layer on a substrate, a thin film bottom plate on the first dielectric layer, and a second dielectric layer on the first dielectric layer and the bottom plate, and a thin film top plate disposed on the second dielectric layer. The thin film top plate and bottom plate are composed of thin film resistive layers, such as sichrome, which also are utilized to form back end thin film resistors having various properties. Interconnect conductors of a metallization layer contact the top and bottom plates through corresponding vias.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Eric W. Beach
  • Patent number: 7704871
    Abstract: An integrated circuit structure including multiple thin film resistors having different sheet resistances and TCRs includes a first oxide layer (2) formed on a semiconductor substrate (1), a first thin film resistor (3) disposed on the first oxide layer (2), and a second oxide layer (14) disposed over the first oxide layer (2) and first thin film resistor (3). A second thin film resistor (15) is formed on the second oxide layer (14) and a third oxide layer (16) is formed over the second thin film resistor (15) and the second oxide layer (14). Interconnect metallization elements (12A,B & 22A,B) disposed on at least one of the second (14) and third (16) oxide layers electrically contact the circuit element (4), terminals of the first thin film resistor (3), and terminals of the second thin film resistor (15), respectively, through corresponding contact openings through at least one of the second (14) and third (16) oxide layers.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: April 27, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Eric W Beach
  • Patent number: 7696603
    Abstract: An integrated circuit back end capacitor structure includes a first dielectric layer on a substrate, a thin film bottom plate on the first dielectric layer, and a second dielectric layer on the first dielectric layer and the bottom plate, and a thin film top plate disposed on the second dielectric layer. The thin film top plate and bottom plate are composed of thin film resistive layers, such as sichrome, which also are utilized to form back end thin film resistors having various properties. Interconnect conductors of a metallization layer contact the top and bottom plates through corresponding vias.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: April 13, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Eric W. Beach
  • Patent number: 7455448
    Abstract: A method of determining the degree of calibration of an RTP chamber (1) includes providing a test wafer having a deposited sichrome layer (22) of sheet resistance Rsi on an oxide layer (21) formed on a silicon substrate (20). The test wafer is annealed in the RTP chamber for a selected duration at a selected anneal temperature which is measured by the a permanent thermocouple or pyrometer (8). The sheet resistance of the annealed sichrome is measured, and a sheet resistance change ?Rs=Rsi?Rsf is computed. The “actual” value of the anneal temperature is determined from predetermined characterizing information relating ?Rs to a range of values of anneal temperature. The RTP chamber is re-calibrated if in accordance with the value of ?Rs if the difference between the “actual” value of the anneal temperature and the value measured by the permanent thermocouple or pyrometer exceeds an acceptable error.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: November 25, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Rajneesh Jaiswal, Eric W. Beach, Barbara M. Barnes
  • Patent number: 7449783
    Abstract: A thin film resistor structure includes a plurality of thin film resistor sections. Conductive vias (5) are disposed on a first end of each of the thin film resistor sections, respectively. The first conductor (2) is connected to the vias of the first end, and a second conductor (3) is connected to vias on a second end of each of the thin film resistor sections. A distribution of a parameter of a batch of circuits including the thin film resistor structure indicates a systematic error in resistance values. Based on analysis of the distribution and the circuit, or more of the vias are individually moved at the layout grid level by a layout grid address unit to reduce the systematic error by making corresponding adjustments on a via reticle of a mask set used for making the circuits. Expensive laser trimming of thin film resistors of the circuit is thereby avoided.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: November 11, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Jimmy R. Naylor, Walter B. Meinel
  • Publication number: 20080272460
    Abstract: An integrated circuit includes a first thin film resistor on a first dielectric layer. A first layer of interconnect conductors on the first dielectric layer includes a first and second interconnect conductors electrically contacting the first thin film resistor. A second dielectric layer is formed on the first dielectric layer. A second thin film resistor is formed on the second dielectric layer. A third dielectric layer is formed on the second dielectric layer. A second layer of interconnect conductors on the third dielectric layer includes a third interconnect conductor extending through an opening in the second and third dielectric layers to contact the first interconnect conductor, a fourth interconnect conductor extending through an opening in the second and third dielectric layers to contact the second interconnect conductor, and two interconnect conductors extending through openings in the third dielectric layer of the second thin film resistor.
    Type: Application
    Filed: July 21, 2008
    Publication date: November 6, 2008
    Inventors: Eric W. Beach, Vladimir F. Drobny, Derek W. Robinson
  • Publication number: 20080248599
    Abstract: A method of determining the degree of calibration of an RTP chamber (1) includes providing a test wafer having a deposited sichrome layer (22) of sheet resistance Rsi on an oxide layer (21) formed on a silicon substrate (20). The test wafer is annealed in the RTP chamber for a selected duration at a selected anneal temperature which is measured by the a permanent thermocouple or pyrometer (8). The sheet resistance of the annealed sichrome is measured, and a sheet resistance change Rs=Rsi?Rsf is computed. The “actual” value of the anneal temperature is determined from predetermined characterizing information relating Rs to a range of values of anneal temperature. The RTP chamber is re-calibrated if in accordance with the value of Rs if the difference between the “actual” value of the anneal temperature and the value measured by the permanent thermocouple or pyrometer exceeds an acceptable error.
    Type: Application
    Filed: June 19, 2008
    Publication date: October 9, 2008
    Inventors: Rajneesh Jaiswal, Eric W. Beach, Barbara M. Barnes
  • Patent number: 7416951
    Abstract: An integrated circuit includes a first thin film resistor on a first dielectric layer. A first layer of interconnect conductors on the first dielectric layer includes a first and second interconnect conductors electrically contacting the first thin film resistor. A second dielectric layer is formed on the first dielectric layer. A second thin film resistor is formed on the second dielectric layer. A third dielectric layer is formed on the second dielectric layer. A second layer of interconnect conductors on the third dielectric layer includes a third interconnect conductor extending through an opening in the second and third dielectric layers to contact the first interconnect conductor, a fourth interconnect conductor extending through an opening in the second and third dielectric layers to contact the second interconnect conductor, and two interconnect conductors extending through openings in the third dielectric layer of the second thin film resistor.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: August 26, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Vladimir F. Drobny, Derek W. Robinson
  • Patent number: 7403094
    Abstract: An integrated circuit thin film resistor structure includes a first dielectric layer (18A) disposed on a semiconductor layer (16), a first dummy fill layer (9A) disposed on the first dielectric layer (18B), a second dielectric layer (18C) disposed on the first dummy fill layer (9A), the second dielectric layer (18B) having a first planar surface (18-3), a first thin film resistor (2) disposed on the first planar surface (18-3) over the first dummy fill layer (9A). A first metal interconnect layer (22A,B) includes a first portion (22A) contacting a first head portion of the thin film resistor (2). A third dielectric layer (21) is disposed on the thin film resistor (2) and the first metal interconnect layer (22A,B). Preferably, the first thin film resistor (2) is symmetrically aligned with the first dummy fill layer (9A). In the described embodiments, the first dummy fill layer is composed of metal (integrated circuit metallization).
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: July 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Walter B. Meinel, Philipp Steinmann
  • Publication number: 20080132056
    Abstract: An integrated circuit structure including multiple thin film resistors having different sheet resistances and TCRs includes a first oxide layer (2) formed on a semiconductor substrate (1), a first thin film resistor (3) disposed on the first oxide layer (2), and a second oxide layer (14) disposed over the first oxide layer (2) and first thin film resistor (3). A second thin film resistor (15) is formed on the second oxide layer (14) and a third oxide layer (16) is formed over the second thin film resistor (15) and the second oxide layer (14). Interconnect metallization elements (12A,B & 22A,B) disposed on at least one of the second (14) and third (16) oxide layers electrically contact the circuit element (4), terminals of the first thin film resistor (3), and terminals of the second thin film resistor (15), respectively, through corresponding contact openings through at least one of the second (14) and third (16) oxide layers.
    Type: Application
    Filed: January 18, 2008
    Publication date: June 5, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Eric W. Beach
  • Patent number: 7345573
    Abstract: An integrated circuit structure including multiple thin film resistors having different sheet resistances and TCRs includes a first oxide layer (2) formed on a semiconductor substrate (1), a first thin film resistor (3) disposed on the first oxide layer (2), and a second oxide layer (14) disposed over the first oxide layer (2) and first thin film resistor (3). A second thin film resistor (15) is formed on the second oxide layer (14) and a third oxide layer (16) is formed over the second thin film resistor (15) and the second oxide layer (14). Interconnect metallization elements (12A,B & 22A,B) disposed on at least one of the second (14) and third (16) oxide layers electrically contact the circuit element (4), terminals of the first thin film resistor (3), and terminals of the second thin film resistor (15), respectively, through corresponding contact openings through at least one of the second (14) and third (16) oxide layers.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: March 18, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Eric W. Beach
  • Patent number: 7208388
    Abstract: A method of making integrated circuit thin film resistor includes forming a first dielectric layer (18B) over a substrate and providing a structure to reduce variation of head resistivity thereof by forming a dummy fill layer (9A) on the first dielectric layer, and forming a second dielectric layer (18D) over the first dummy fill layer. A thin film resistor (2) is formed on the second dielectric layer (18D). A first inter-level dielectric layer (21A) is formed on the thin film resistor and the second dielectric layer. A first metal layer (22A) is formed on the first inter-level dielectric layer and electrically contacts a portion of the thin film resistor. Preferably, the first dummy fill layer is formed as a repetitive pattern of sections such that the repetitive pattern is symmetrically aligned with respect to multiple edges of the thin-film resistor (2).
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 24, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Philipp Steinmann
  • Patent number: 7202533
    Abstract: An integrated circuit structure includes a first dielectric layer disposed on a semiconductor layer, a first thin film resistor disposed on the first dielectric layer, a second dielectric layer disposed on the first dielectric layer and the first thin film resistor, and a second thin film resistor disposed on the second dielectric layer. A first layer of interconnect conductors is disposed on the second dielectric layer and includes a first interconnect conductor contacting a first contact area of the first thin film resistor, a second interconnect conductor contacting a second contact area of the first thin film resistor, and a third interconnect conductor electrically contacting a first contact area of the second thin film resistor. A third dielectric layer is disposed on the second dielectric layer. A second layer of interconnect conductors is disposed on the third dielectric layer including a fourth interconnect conductor for contacting the second interconnect conductor.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: April 10, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Vladimir F. Drobny, Derek W. Robinson
  • Patent number: 7005361
    Abstract: In one embodiment, an integrated circuit includes a thin film resistor, which includes a resistor material that has been deposited on a substrate surface within a channel defined by opposing first and second portions of a stencil structure formed on the substrate surface, the resistor material having an initial width determined by a width of the channel. The stencil structure has been adapted to receive a planarizing material that protects against reduction of the initial width of the resistor material during subsequent process steps for removing the stencil structure. A head mask overlays an end portion of the thin film resistor and a dielectric overlays the head mask, the dielectric defining a via formed in the dielectric above a portion of the head mask. A conductive material has been deposited in the via, coupled to the portion of the head mask and electrically connecting the thin film resistor to other components of the integrated circuit.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: February 28, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Siang Ping Kwok, Eric W. Beach, Philipp Steinmann
  • Patent number: 6979637
    Abstract: A method and structure for controlling the surface properties in the dielectric layers in a thin film component can be provided for improving the trimming process of thin film element. A metal fill is configured with a uniform fill pattern beneath an array of thin film resistors, and can comprise a plurality of smaller features or peaks providing a finer fill pattern that improves the control of the topology of the dielectric layers. The fill pattern can be configured in various manners, such as fill patterns parallel to the thin film resistor, fill patterns perpendicular to the thin film resistor, or fill patterns comprising a checkerboard-like configuration.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: December 27, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Walter B. Meinel, Eric L. Hoyt
  • Patent number: 6872655
    Abstract: A thin film resistor structure (75) is formed on a dielectric layer (60). A capping layer (90) is formed above said thin film resistor structure (75) and vias (110) are formed in the capping layer (90) using a two step etching process comprising of a dry etch process and a wet etch process. Conductive layers (120) are formed in the vias and form electrical contacts to the thin film resistor structure (75).
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: March 29, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Pushpa Mahalingam, Robert Hung Nguyen, Philipp Steinmann, Eric W. Beach, Siang Ping Kwok
  • Publication number: 20040227614
    Abstract: In one embodiment, an integrated circuit includes a thin film resistor, which includes a resistor material that has been deposited on a substrate surface within a channel defined by opposing first and second portions of a stencil structure formed on the substrate surface, the resistor material having an initial width determined by a width of the channel. The stencil structure has been adapted to receive a planarizing material that protects against reduction of the initial width of the resistor material during subsequent process steps for removing the stencil structure. A head mask overlays an end portion of the thin film resistor and a dielectric overlays the head mask, the dielectric defining a via formed in the dielectric above a portion of the head mask. A conductive material has been deposited in the via, coupled to the portion of the head mask and electrically connecting the thin film resistor to other components of the integrated circuit.
    Type: Application
    Filed: June 24, 2004
    Publication date: November 18, 2004
    Inventors: Siang Ping Kwok, Eric W. Beach, Philipp Steinmann