Patents by Inventor Eric W. FRYATT

Eric W. FRYATT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9139781
    Abstract: The morphology of petroleum cokes produced by the delayed coking of feeds produced from extra-heavy crude sources such as those from the Venezuela Orinoco Heavy Oil Belt can be controlled to produce a less dense coke which is less likely to inflame in the coke pit or in subsequent handling. An aqueous solution of an alkali metal or alkaline earth metal carbonate salt when added to a feed of this type which would normally produce a dense coke product is effective to produce a quenchable coke product of lower density and higher porosity, usually in compact, granular form permitting it to be readily discharged from the drum.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 22, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Fritz A. Bernatz, Michael Siskin, Christopher P. Eppig, Craig Y. Sabottke, Eric W. Fryatt
  • Patent number: 8496805
    Abstract: Petroleum cokes derived from extra-heavy crude sources can be made more amenable to quenching by adding water or a water/light oil mixture to the coker feed downstream of the furnace. The coke product resulting from this addition of normally volatile liquids to the hot coker feed is still relatively dense but is more friable and usually is in a compact, relatively free-flowing, granular form. The coke is more amenable to uniform quenching in the drum and so can be cut and discharged with a reduced risk of eruptions and a reduced risk of fires in the coke pit or when the coke is subsequently handled and transported.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 30, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, Fritz A. Bernatz, Eric W. Fryatt, Christopher P. Eppig, Jordan K. Lambert
  • Publication number: 20110005911
    Abstract: The morphology of petroleum cokes produced by the delayed coking of feeds produced from extra-heavy crude sources such as those from the Venezuela Orinoco Heavy Oil Belt can be controlled to produce a less dense coke which is less likely to inflame in the coke pit or in subsequent handling. An aqueous solution of an alkali metal or alkaline earth metal carbonate salt when added to a feed of this type which would normally produce a dense coke product is effective to produce a quenchable coke product of lower density and higher porosity, usually in compact, granular form permitting it to be readily discharged from the drum.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 13, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Fritz A. BERNATZ, Michael SISKIN, Christopher P. EPPIG, Craig Y. SABOTTKE, Eric W. FRYATT
  • Publication number: 20110005912
    Abstract: Petroleum cokes derived from extra-heavy crude sources can be made more amenable to quenching by adding water or a water/light oil mixture to the coker feed downstream of the furnace. The coke product resulting from this addition of normally volatile liquids to the hot coker feed is still relatively dense but is more friable and usually is in a compact, relatively free-flowing, granular form. The coke is more amenable to uniform quenching in the drum and so can be cut and discharged with a reduced risk of eruptions and a reduced risk of fires in the coke pit or when the coke is subsequently handled and transported.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 13, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Craig Y. SABOTTKE, Fritz A. BERNATZ, Eric W. FRYATT, Chrishtopher P. EPPIG, Jordan K. LAMBERT