Patents by Inventor Eric W. Jones

Eric W. Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094233
    Abstract: The present invention relates to methods, devices and systems for associating consumable data with an assay consumable used in a biological assay. Provided are assay systems and associated consumables, wherein the assay system adjusts one or more steps of an assay protocol based on consumable data specific for that consumable. Various types of consumable data are described, as well as methods of using such data in the conduct of an assay by an assay system. The present invention also relates to consumables (e.g., kits and reagent containers), software, data deployable bundles, computer-readable media, loading carts, instruments, systems, and methods, for performing automated biological assays.
    Type: Application
    Filed: July 18, 2023
    Publication date: March 21, 2024
    Inventors: Jacob N. WOHLSTADTER, Manish KOCHAR, Peter J. BOSCO, Ian D. CHAMBERLIN, Bandele JEFFREY-COKER, Eric M. JONES, Gary I. KRIVOY, Don E. KRUEGER, Aaron H. LEIMKUEHLER, Pei-Ming WU, Kim-Xuan NGUYEN, Pankaj OBEROI, Louis W. PANG, Jennifer PARKER, Victor PELLICIER, Nicholas SAMMONS, George SIGAL, Michael L. VOCK, Stanley T. SMITH, Carl C. STEVENS, Rodger D. OSBORNE, Kenneth E. PAGE, Michael T. WADE, Jon WILLOUGHBY, Lei WANG, Xinri CONG, Kin NG
  • Patent number: 6046398
    Abstract: Linear arrays with up to 63 micromachined thermopile infrared detectors on silicon substrates have been constructed and tested. Each detector consists of a suspended silicon nitride membrane with 11 thermocouples of sputtered Bi--Te and Bi--Sb--Te thermoelectric elements films. At room temperature and under vacuum these detectors exhibit response times of 99 ms, zero frequency D* values of 1.4.times.10.sup.9 cmHz.sup.1/2 /W and responsivity values of 1100 V/W when viewing a 1000 K blackbody source. The only measured source of noise above 20 mHz is Johnson noise from the detector resistance. These results represent the best performance reported to date for an array of thermopile detectors. The arrays are well suited for uncooled dispersive point spectrometers. In another embodiment, also with Bi--Te and Bi--Sb--Te thermoelectric materials on micromachined silicon nitride membranes, detector arrays have been produced with D* values as high as 2.2.times.10.sup.9 cmHz.sup.1/2 /W for 83 ms response times.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: April 4, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Marc C. Foote, Eric W. Jones, Thierry Caillat
  • Patent number: 5757024
    Abstract: Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition. Also monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: May 26, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert W. Fathauer, Thomas George, Eric W. Jones
  • Patent number: 5685946
    Abstract: Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: November 11, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert W. Fathauer, Thomas George, Eric W. Jones
  • Patent number: 5648297
    Abstract: Extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime have been demonstrated for the first time. This result was achieved by incorporating a 1-nm-thick p+ doping spike at the PtSi/Si interface. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p+ doping spike and the Schottky image force. The p+ doping spikes were grown by molecular beam epitaxy at 450 degrees Celsius using elemental boron as the dopant source, with doping concentrations ranging from 1.times.10.sup.19 to 1.times.10.sup.21 cm.sup.-3. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p+ spikes.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: July 15, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: True-Lon Lin, Jin S. Park, Sarath D. Gunapala, Eric W. Jones, Hector M. Del Castillo
  • Patent number: 5421958
    Abstract: A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO.sub.3 :H.sub.2 O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70% the porous silicon pattern emits visible light at room temperature.
    Type: Grant
    Filed: June 7, 1993
    Date of Patent: June 6, 1995
    Assignee: The United States of America as represented by the Administrator of the United States National Aeronautics and Space Administration
    Inventors: Robert W. Fathauer, Eric W. Jones
  • Patent number: D506518
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: June 21, 2005
    Inventor: Eric W. Jones