Patents by Inventor Eric W. McFarland

Eric W. McFarland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11814285
    Abstract: The reaction rate of hydrocarbon pyrolysis can be increased to produce solid carbon and hydrogen by the use of molten materials which have catalytic functionality to increase the rate of reaction and physical properties that facilitate the formation and contamination-free separation of the solid carbon. Processes, materials, reactor configurations, and conditions are disclosed whereby methane and other hydrocarbons can be decomposed at high reaction rates into hydrogen gas and carbon products without any carbon oxides in a single reaction step. The process also makes use of specific properties of selected materials with unique solubilities and/or wettability of products into (and/or by) the molten phase to facilitate generation of purified products and increased conversion in more general reactions.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 14, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Eric W. McFarland, Ches Upham, Jiren Zeng, Clarke Palmer, Shizhao Su, Davide Mannini, Dohyung Kang, Nazanin Rahimi, Horia Metiu, Michael Gordon
  • Publication number: 20230340336
    Abstract: A process for performing high temperature reactions includes introducing reactants into a reactor vessel, generating a high temperature within the reactor vessel, exposing a first portion of the reactants to the high temperature, and reacting the first portion of the reactants based on contact with the high temperature to produce one or more products. The high temperature is higher than a lower temperature of a wall of the reactor vessel, and a temperature gradient is generated between the high temperature and the lower temperature of the wall. A second portion of the reactants are not exposed to the high temperature, and the second portion of the reactants do not react.
    Type: Application
    Filed: August 19, 2021
    Publication date: October 26, 2023
    Inventor: Eric W. McFarland
  • Publication number: 20210061654
    Abstract: A reaction process comprises feeding a feed stream comprising a hydrocarbon into a vessel, reacting the feed stream in the vessel, producing solid carbon and a gas phase product based on the contacting of the feed stream with the molten salt mixture, separating the gas phase product from the molten salt mixture, and separating the solid carbon from the molten salt mixture to produce a solid carbon product. The vessel comprises a molten salt mixture, and the molten salt mixture comprises a reactive component.
    Type: Application
    Filed: May 14, 2019
    Publication date: March 4, 2021
    Applicant: The Regents of the University of California
    Inventors: Eric W. McFarland, Ches Upham, Clarke Palmer, Shizhao Su, Davide Mannini, Nazanin Rahimi, Dohyung Kang, Horia Metiu, Michael Gordon
  • Publication number: 20200283293
    Abstract: The reaction rate of hydrocarbon pyrolysis can be increased to produce solid carbon and hydrogen by the use of molten materials which have catalytic functionality to increase the rate of reaction and physical properties that facilitate the formation and contamination-free separation of the solid carbon. Processes, materials, reactor configurations, and conditions are disclosed whereby methane and other hydrocarbons can be decomposed at high reaction rates into hydrogen gas and carbon products without any carbon oxides in a single reaction step. The process also makes use of specific properties of selected materials with unique solubilities and/or wettability of products into (and/or by) the molten phase to facilitate generation of purified products and increased conversion in more general reactions.
    Type: Application
    Filed: November 16, 2018
    Publication date: September 10, 2020
    Applicant: The Regents of the University of California
    Inventors: Eric W. McFarland, Ches Upham, Jiren Zeng, Clarke Palmer, Shizhao Su, Davide Mannini, Dohyung Kang, Nazanin Rahimi, Horia Metiu, Michael Gordon
  • Patent number: 10100415
    Abstract: A multi-junction artificial photosynthetic unit includes an active element with a plurality of semiconducting layers, with metal layers deposited between the semiconductor layers appropriately forming Schottky barrier junctions or ohmic junctions with a surface of an adjacent semiconductor layer. The active element is formed within a protective structure formed of porous aluminum oxide. Successive layers of the active element can be formed within the protective structure, and additional layers and junctions can be added until desired photovoltages are achieved. A photoreactor for the production of fuels and chemicals driven by solar-powered redox reactions includes a bag reactor filled with a feedstock solution. A plurality of multi-junction photosynthetic units are placed in the feedstock solution to drive the redox reactions and produce the desired fuels and chemicals.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: October 16, 2018
    Assignee: HYPERSOLAR, INC.
    Inventors: Syed Mubeen Jawahar Hussaini, Eric W. McFarland, Martin Moskovits, Joun Lee, Tim Young
  • Publication number: 20160076154
    Abstract: A multi-junction artificial photosynthetic unit includes an active element with a plurality of semiconducting layers, with metal layers deposited between the semiconductor layers appropriately forming Schottky barrier junctions or ohmic junctions with a surface of an adjacent semiconductor layer. The active element is formed within a protective structure formed of porous aluminum oxide. Successive layers of the active element can be formed within the protective structure, and additional layers and junctions can be added until desired photovoltages are achieved. A photoreactor for the production of fuels and chemicals driven by solar-powered redox reactions includes a bag reactor filled with a feedstock solution. A plurality of multi-junction photosynthetic units are placed in the feedstock solution to drive the redox reactions and produce the desired fuels and chemicals.
    Type: Application
    Filed: March 16, 2015
    Publication date: March 17, 2016
    Applicants: HyperSolar Inc., The Regents of the University of California
    Inventors: Syed Mubeen Jawahar Hussaini, Eric W. McFarland, Martin Moskovits, Joun Lee, Tim Young
  • Patent number: 9045385
    Abstract: A process is disclosed that includes brominating a C2, C3, C4, C5 or C6 alkane with elemental bromine to form a bromo-alkane. The bromo-alkane is reacted to form a C2, C3, C4, C5 or C6 alkene and HBr. The HBr is oxidized to form elemental bromine.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 2, 2015
    Assignee: REACTION 35, LLC
    Inventors: Vivek Julka, Sagar Gadewar, Peter K. Stoimenov, Philip Grosso, Jeffrey H. Sherman, Aihua Zhang, Eric W. McFarland
  • Publication number: 20150099911
    Abstract: A process is disclosed that includes brominating a C2, C3 , C4, C5 or C6 alkane with elemental bromine to form a bromo-alkane. The bromo-alkane is reacted to form a C2, C3, C4, C5 or C6 alkene and HBr. The HBr is oxidized to form elemental bromine.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Vivek JULKA, Sagar GADEWAR, Peter K. STOIMENOV, Philip GROSSO, Jeffrey H. SHERMAN, Aihua ZHANG, Eric W. MCFARLAND
  • Patent number: 8940954
    Abstract: A process is disclosed that includes brominating a C2, C3, C4, C5 or C6 alkane with elemental bromine to form a bromo-alkane. The bromo-alkane is reacted to form a C2, C3, C4, C5 or C6 alkene and HBr. The HBr is oxidized to form elemental bromine.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: January 27, 2015
    Assignee: Reaction35, LLC
    Inventors: Vivek Julka, Sagar Gadewar, Peter K. Stoimenov, Philip Grosso, Jeffrey H. Sherman, Aihua Zhang, Eric W. McFarland
  • Patent number: 8449849
    Abstract: A method comprising providing a halogen stream; providing a first alkane stream; reacting at least a portion of the halogen stream with at least a portion of the first alkane stream to form a halogenated stream, wherein the halogenated stream comprises alkyl monohalides, alkyl polyhalides, and a hydrogen halide; providing a second alkane stream; and reacting at least a portion of the second alkane stream with at least a portion of the alkyl polyhalides to create at least some additional alkyl monohalides.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 28, 2013
    Assignee: GRT, Inc.
    Inventors: Sagar B. Gadewar, Michael D. Wyrsta, Philip Grosso, Aihua Zhang, Eric W. McFarland, Zachary J. A. Komon, Jeffrey H. Sherman
  • Patent number: 8415517
    Abstract: A method comprising: providing a first halogen stream; providing a first alkane stream; reacting at least a portion of the first halogen stream with at least a portion of the first alkane stream in a first reaction vessel to form a first halogenated stream; providing a second alkane stream comprising C2 and higher hydrocarbons; providing a second halogen stream; and reacting at least a portion of the second halogen stream with at least a portion of the second alkane stream in a second reaction vessel to form a second halogenated stream.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: April 9, 2013
    Assignee: GRT, Inc.
    Inventors: Sagar Gadewar, Michael Wyrsta, Philip Grosso, Aihua Zhang, Eric W. McFarland, Zachary J. A. Komon, Jeffrey H. Sherman, Peter Stoimenov, Hongfei Lin, Shawn Huff, Shouli Sun
  • Patent number: 8415512
    Abstract: Improvements in previously disclosed methods of and apparatuses for converting alkanes, alkenes, and aromatics to olefins, alcohols, ethers, and aldehydes includes: safety improvements, use of alternative feedstocks, process simplification, improvements to the halogenation step, improvements to the reproportionation step, improvements to the solid oxide reaction, improvements to solid oxide regeneration, improvements in separations, maintenance, start-up, shut-down, and materials of construction.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: April 9, 2013
    Assignee: GRT, Inc.
    Inventors: Jeffrey H. Sherman, Eric W. McFarland, Michael J. Weiss, Ivan Marc Lorkovic, Leroy E. Laverman, Shouli Sun, Dieter J. Schaefer, Galen D. Stucky, Peter C. Ford, Philip Grosso, Ashley W. Rreed, Michael F. Doherty
  • Publication number: 20120302808
    Abstract: A process is disclosed that includes brominating a C2, C3, C4, C5 or C6 alkane with elemental bromine to form a bromo-alkane. The bromo-alkane is reacted to form a C2, C3, C4, C5 or C6 alkene and HBr. The HBr is oxidized to form elemental bromine.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 29, 2012
    Applicant: GRT, INC.
    Inventors: Vivek Julka, Sagar Gadewar, Peter K. Stoimenov, Philip Grosso, Jeffrey H. Sherman, Aihua Zhang, Eric W. McFarland
  • Publication number: 20120009090
    Abstract: A method comprising providing a halogen stream; providing a first alkane stream; reacting at least a portion of the halogen stream with at least a portion of the first alkane stream to form a halogenated stream, wherein the halogenated stream comprises alkyl monohalides, alkyl polyhalides, and a hydrogen halide; providing a second alkane stream; and reacting at least a portion of the second alkane stream with at least a portion of the alkyl polyhalides to create at least some additional alkyl monohalides.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Inventors: Sagar B. Gadewar, Michael D. Wyrsta, Philip Grosso, Aihua Zhang, Eric W. McFarland, Zachary J.A. Komon, Jeffrey H. Sherman
  • Patent number: 8053616
    Abstract: A method comprising providing a halogen stream; providing a first alkane stream; reacting at least a portion of the halogen stream with at least a portion of the first alkane stream to form a halogenated stream, wherein the halogenated stream comprises alkyl monohalides, alkyl polyhalides, and a hydrogen halide; providing a second alkane stream; and reacting at least a portion of the second alkane stream with at least a portion of the alkyl polyhalides to create at least some additional alkyl monohalides.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 8, 2011
    Assignee: GRT, Inc.
    Inventors: Sagar B. Gadewar, Michael D. Wyrsta, Philip Grosso, Aihua Zhang, Eric W. McFarland, Zachary J. A. Komon, Jeffrey H. Sherman
  • Publication number: 20110034741
    Abstract: Improvements in previously disclosed methods of and apparatuses for converting alkanes, alkenes, and aromatics to olefins, alcohols, ethers, and aldehydes includes: safety improvements, use of alternative feedstocks, process simplification, improvements to the halogenation step, improvements to the reproportionation step, improvements to the solid oxide reaction, improvements to solid oxide regeneration, improvements in separations, maintenance, start-up, shut-down, and materials of construction.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 10, 2011
    Inventors: Jeffrey H. Sherman, Eric W. McFarland, Michael J. Weiss, Ivan Marc Lorkovic, Leroy E. Laverman, Shouli Sun, Dieter J. Schaefer, Galen D. Stucky, Peter C. Ford, Philip Grosso, Ashley W. Rreed, Michael F. Doherty
  • Patent number: 7883568
    Abstract: A process is provided for separating one or more light gases from bromine or chlorine using one or more physical separations and contact with a chemical scrubber to recover additional halogen. In one aspect, the process comprises (a) providing a feed of halogen containing one or more light gases to a distillation column or flash vaporizer; (b) operating the distillation column or flash vaporizer to separate the feed into (i) a first liquid containing a major amount of halogen and no more than a minor amount of light gas(es), and (ii) a first vapor containing a major amount of light gas(es) and no more than a minor amount of halogen; and (c) providing the vapor to a chemical scrubber to recover halogen from the vapor.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: February 8, 2011
    Assignee: GRT, Inc.
    Inventors: Sagar B. Gadewar, Peter K. Stoimenov, Philip Grosso, Eric W. McFarland, Ashley W. Breed, Michael J. Weiss, Michael D. Wyrsta
  • Patent number: 7838708
    Abstract: Improvements in previously disclosed methods of and apparatuses for converting alkanes, alkenes, and aromatics to olefins, alcohols, ethers, and aldehydes includes: safety improvements, use of alternative feedstocks, process simplification, improvements to the halogenation step, improvements to the reproportionation step, improvements to the solid oxide reaction, improvements to solid oxide regeneration, improvements in separations, maintenance, start-up, shut-down, and materials of construction.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: November 23, 2010
    Assignees: GRT, Inc., The Regents of the University of California
    Inventors: Jeffrey H. Sherman, Eric W. McFarland, Michael J. Weiss, Ivan Marc Lorkovic, Leroy E. Laverman, Shouli Sun, Dieter J. Schaefer, Galen D. Stucky, Peter C. Ford, Philip Grosso, Ashley W. Breed, Michael F. Doherty
  • Publication number: 20100121119
    Abstract: Improvements in previously disclosed methods of and apparatuses for converting alkanes, alkenes, and aromatics to olefins, alcohols, ethers, and aldehydes includes: safety improvements, use of alternative feedstocks, process simplification, improvements to the halogenation step, improvements to the reproportionation step, improvements to the solid oxide reaction, improvements to solid oxide regeneration, improvements in separations, maintenance, start-up, shut-down, and materials of construction.
    Type: Application
    Filed: January 25, 2010
    Publication date: May 13, 2010
    Inventors: Jeffrey H. Sherman, Eric W. McFarland, Michael J. Weiss, Ivan Marc Lorkovic, Leroy E. Laverman, Shouli Sun, Dieter J. Schaefer, Galen D. Stucky, Peter C. Ford, Philip Grosso, Ashley W. Breed, Michael F. Doherty
  • Publication number: 20100099928
    Abstract: A method comprising providing a halogen stream; providing a first alkane stream; reacting at least a portion of the halogen stream with at least a portion of the first alkane stream to form a halogenated stream, wherein the halogenated stream comprises alkyl monohalides, alkyl polyhalides, and a hydrogen halide; providing a second alkane stream; and reacting at least a portion of the second alkane stream with at least a portion of the alkyl polyhalides to create at least some additional alkyl monohalides.
    Type: Application
    Filed: July 1, 2009
    Publication date: April 22, 2010
    Inventors: Sagar B. Gadewar, Michael D. Wyrsta, Philip Grosso, Aihua Zhang, Eric W. McFarland, Zachary J.A. Komon, Jeffrey H. Sherman