Patents by Inventor Eric W. Singleton

Eric W. Singleton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6954343
    Abstract: A transducing head has a magnetoresistive sensor and a first and a second dual path conductor/magnet structure for providing current to the magnetoresistive sensor and for stabilizing the magnetoresistive sensor. The first and the second dual path conductor/magnet structures are arranged in an abutted-junction configuration on opposite sides of the magnetoresistive sensor. Each of the first and the second dual path conductor/magnet structures has at least one bias layer and at least one conductor layer. Each bias layer is formed upon a bias seed layer positioned over one of the conductor layers. Each bias seed layer is selected to result in the bias layer formed upon it having a coercivity between about 1 kOe and about 5 kOe and an in-plane remnant squareness greater than about 0.8. Most preferably, each of the first and the second dual path conductor/magnet structures is formed of at least two conductor layers interspersed with at least one bias layer.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: October 11, 2005
    Assignee: Seagate Technology LLC
    Inventors: David J. Larson, Eric W. Singleton, Mai A. Ghaly
  • Patent number: 6818330
    Abstract: A perpendicular magnetic recording medium with antiferromagnetic coupling in a soft magnetic underlayer. The soft magnetic underlayer includes a first magnetic soft layer, a first interface layer on the first magnetic soft layer, a second magnetic soft layer, a second interface layer on the second magnetic soft layer, and a non-magnetic coupling layer between the first interface layer and the second interface layer. The first and second magnetic soft layers are antiferromagnetically exchange coupled to one another through the non-magnetic coupling layer, wherein the first and second interface layers increase the exchange coupling between the first and second magnetic soft layers.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: November 16, 2004
    Assignee: Seagate Technology LLC
    Inventors: Alexander M. Shukh, Eric W. Singleton, Sakhrat Khizroev, Dmitri Litvinov
  • Patent number: 6795279
    Abstract: This invention presents a method and structure for magnetic spin valves. The spin valve structure includes a first ferromagnetic layer separated from a second ferromagnetic layer by a non-magnetic layer. The spin valve structure also includes a first specular scattering layer separated from a second specular scattering layer by the first ferromagnetic layer, the non-magnetic layer, and the second ferromagnetic layer. The first ferromagnetic layer can include a free layer and the non-magnetic layer can include a spacer layer. The second ferromagnetic layer can include a pinned layer or a reference layer. The specular scattering layers can include a material such as Y2O3, HfO2, MgO, Al2O3, NiO, Fe2O3, and Fe3O4. The specular scattering layers can also be used in a SAF structure. In the SAF structure, the antiferromagnetic coupling material can be co-deposited with the second specular scattering layer.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: September 21, 2004
    Assignee: Seagate Technology LLC
    Inventors: Eric W. Singleton, Kristin Joy Duxstad, Michael B. Hintz
  • Patent number: 6791805
    Abstract: A giant magnetoresistive (GMR) stack configured to operate in a current-perpendicular-to-plane (CPP) mode includes a ferromagnetic free layer, at least one synthetic antiferromagnet, at least one nonmagnetic spacer layer, and at least one antiferromagnetic pinning layer. The ferromagnetic free layer has a rotatable magnetic moment. The synthetic antiferromagnet includes a ferromagnetic reference layer having a fixed magnetic moment, a ferromagnetic pinned layer having a fixed magnetic moment, and a coupling layer positioned between the reference layer and the pinned layer, wherein the coupling layer is selected from the group consisting of Cu, Ag and CuAg. The nonmagnetic spacer layer is positioned between the free layer and the synthetic antiferromagnet. The antiferromagnetic pinning layer is positioned adjacent to the synthetic antiferromagnet.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: September 14, 2004
    Assignee: Seagate Technology LLC
    Inventors: Olle Gunnar Heinonen, Michael Seigler, Eric W. Singleton
  • Publication number: 20040141258
    Abstract: This invention presents a method and structure for magnetic spin valves. The spin valve structure includes a first ferromagnetic layer separated from a second ferromagnetic layer by a non-magnetic layer. The spin valve structure also includes a first specular scattering layer separated from a second specular scattering layer by the first ferromagnetic layer, the non-magnetic layer, and the second ferromagnetic layer. The first ferromagnetic layer can include a free layer and the non-magnetic layer can include a spacer layer. The second ferromagnetic layer can include a pinned layer or a reference layer. The specular scattering layers can include a material such as Y2O3, HfO2, MgO, Al2O3, NiO, Fe2O3, and Fe3O4. The specular scattering layers can also be used in a SAF structure. In the SAF structure, the antiferromagnetic coupling material can be co-deposited with the second specular scattering layer.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 22, 2004
    Applicant: Seagate Technology LLC
    Inventors: Eric W. Singleton, Kristin Joy Duxstad, Michael B. Hintz
  • Publication number: 20040047089
    Abstract: A transducing head includes a first bias element, a second bias element, and a magnetoresistive sensor positioned between the first bias element and the second bias element. The first bias element and the second bias element are each formed of a permanent magnet material having a remanent magnetic moment in a range of about 200 to about 800 emu/cm3. In a preferred embodiment, the permanent magnet material is an alloy comprising iron, platinum, and at least one material selected from copper, silver, magnesium, lead, zinc, bismuth, and antimony.
    Type: Application
    Filed: June 18, 2003
    Publication date: March 11, 2004
    Applicant: Seagate Technology LLC
    Inventors: Eric W. Singleton, David J. Larson, Christopher L. Platt, Kurt W. Wierman, James K. Howard
  • Patent number: 6700753
    Abstract: This invention presents a method and structure for magnetic spin valves. The spin valve structure includes a first ferromagnetic layer separated from a second ferromagnetic layer by a non-magnetic layer. The spin valve structure also includes a first specular scattering layer separated from a second specular scattering layer by the first ferromagnetic layer, the non-magnetic layer, and the second ferromagnetic layer. The first ferromagnetic layer can include a free layer and the non-magnetic layer can include a spacer layer. The second ferromagnetic layer can include a pinned layer or a reference layer. The specular scattering layers can include a material such as Y2O3, HfO2, MgO, Al2O3, NiO, Fe2O3, and Fe3O4. The specular scattering layers can also be used in a SAF structure. In the SAF structure, the antiferromagnetic coupling material can be co-deposited with the second specular scattering layer.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: March 2, 2004
    Assignee: Seagate Technology LLC
    Inventors: Eric W. Singleton, Kristin Joy Duxstad, Michael B. Hintz
  • Patent number: 6683761
    Abstract: An electrical interconnect is configured to provide an electrical connection between a first point and a second point. The interconnect includes a specular reflection layer adjacent a conductor layer. The conductor is configured to conduct electrons between the first and second points and the planar specular reflection layer confines the electrons to the conductor through specular reflection. This reduces electrical resistance of the electrical interconnect measured in a direction parallel with the specular reflection layer.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: January 27, 2004
    Assignee: Seagate Technology LLC
    Inventors: Eric W. Singleton, Kristin J. Duxstad, Paul E. Anderson
  • Publication number: 20030030949
    Abstract: A transducing head has a magnetoresistive sensor and first and second permanent magnet bias elements for providing longitudinal bias to the magnetoresistive sensor. The first and second permanent magnet bias elements are arranged on opposite sides of the magnetoresistive sensor and recessed a distance away from the magnetoresistive sensor. The transducing head of the present invention achieves increased read sensitivity by recessing the first and second permanent magnet bias elements away from the magnetoresistive sensor.
    Type: Application
    Filed: December 20, 2001
    Publication date: February 13, 2003
    Inventors: Mai A. Ghaly, Steven B. Slade, Kristin J. Duxstad, David J. Larson, Eric W. Singleton
  • Publication number: 20020186516
    Abstract: A transducing head has a magnetoresistive sensor and a first and a second dual path conductor/magnet structure for providing current to the magnetoresistive sensor and for stabilizing the magnetoresistive sensor. The first and the second dual path conductor/magnet structures are arranged in an abutted-junction configuration on opposite sides of the magnetoresistive sensor. Each of the first and the second dual path conductor/magnet structures has at least one bias layer and at least one conductor layer. Each bias layer is formed upon a bias seed layer positioned over one of the conductor layers. Each bias seed layer is selected to result in the bias layer formed upon it having a coercivity between about 1 kOe and about 5 kOe and an in-plane remnant squareness greater than about 0.8. Most preferably, each of the first and the second dual path conductor/magnet structures is formed of at least two conductor layers interspersed with at least one bias layer.
    Type: Application
    Filed: May 8, 2002
    Publication date: December 12, 2002
    Applicant: Seagate Technology LLC
    Inventors: David J. Larson, Eric W. Singleton, Mai A. Ghaly
  • Publication number: 20020186513
    Abstract: A giant magnetoresistive (GMR) stack configured to operate in a current-perpendicular-to-plane (CPP) mode includes a ferromagnetic free layer, at least one synthetic antiferromagnet, at least one nonmagnetic spacer layer, and at least one antiferromagnetic pinning layer. The ferromagnetic free layer has a rotatable magnetic moment. The synthetic antiferromagnet includes a ferromagnetic reference layer having a fixed magnetic moment, a ferromagnetic pinned layer having a fixed magnetic moment, and a coupling layer positioned between the reference layer and the pinned layer, wherein the coupling layer is selected from the group consisting of Cu, Ag and CuAg. The nonmagnetic spacer layer is positioned between the free layer and the synthetic antiferromagnet. The antiferromagnetic pinning layer is positioned adjacent to the synthetic antiferromagnet.
    Type: Application
    Filed: April 1, 2002
    Publication date: December 12, 2002
    Inventors: Olle Gunnar Heinonen, Michael Seigler, Eric W. Singleton
  • Patent number: 6490140
    Abstract: A giant magnetoresistive stack for use in a magnetic read head includes a NiFeCr seed layer, a ferromagnetic free layer, at least one nonmagnetic spacer layer, at least one ferromagnetic pinned layer, and at least one PtMnX pinning layer, where X is selected from the group consisting of Cr, Pd, Nb, Re, Rh, Ta, Ru, Os, Zr, Hf, Ni, Co, and Fe. The ferromagnetic free layer has a rotatable magnetic moment. The ferromagnetic pinned layer has a fixed magnetic moment and is positioned adjacent to the PtMnX pinning layer. The nonmagnetic spacer layer is positioned between the free layer and the pinned layer. The NiFeCr seed layer is positioned adjacent to either the free layer or the pinning layer.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: December 3, 2002
    Assignee: Seagate Technology LLC
    Inventors: Sining Mao, Zheng Gao, Eric W. Singleton
  • Publication number: 20020055307
    Abstract: An electrical interconnect is configured to provide an electrical connection between a first point and a second point. The interconnect includes a specular reflection layer adjacent a conductor layer. The conductor is configured to conduct electrons between the first and second points and the planar specular reflection layer confines the electrons to the conductor through specular reflection. This reduces electrical resistance of the electrical interconnect measured in a direction parallel with the specular reflection layer.
    Type: Application
    Filed: October 17, 2001
    Publication date: May 9, 2002
    Inventors: Eric W. Singleton, Kristin J. Duxstad, Paul E. Anderson
  • Publication number: 20020028357
    Abstract: A perpendicular magnetic recording medium with antiferromagnetic coupling in a soft magnetic underlayer. The soft magnetic underlayer includes a first magnetic soft layer, a first interface layer on the first magnetic soft layer, a second magnetic soft layer, a second interface layer on the second magnetic soft layer, and a non-magnetic coupling layer between the first interface layer and the second interface layer. The first and second magnetic soft layers are antiferromagnetically exchange coupled to one another through the non-magnetic coupling layer, wherein the first and second interface layers increase the exchange coupling between the first and second magnetic soft layers.
    Type: Application
    Filed: August 24, 2001
    Publication date: March 7, 2002
    Inventors: Alexander M. Shukh, Eric W. Singleton, Sakhrat Khizroev, Dmitri Litvinov
  • Publication number: 20020012207
    Abstract: This invention presents a method and structure for magnetic spin valves. The spin valve structure includes a first ferromagnetic layer separated from a second ferromagnetic layer by a non-magnetic layer. The spin valve structure also includes a first specular scattering layer separated from a second specular scattering layer by the first ferromagnetic layer, the non-magnetic layer, and the second ferromagnetic layer. The first ferromagnetic layer can include a free layer and the non-magnetic layer can include a spacer layer. The second ferromagnetic layer can include a pinned layer or a reference layer. The specular scattering layers can include a material such as Y2O3, HfO2, MgO, Al2O3, NiO, Fe2O3, and Fe3O4. The specular scattering layers can also be used in a SAF structure. In the SAF structure, the antiferromagnetic coupling material can be co-deposited with the second specular scattering layer.
    Type: Application
    Filed: April 12, 2001
    Publication date: January 31, 2002
    Inventors: Eric W. Singleton, Kristin Joy Duxstad, Michael B. Hintz