Patents by Inventor Erich B. Jaeger

Erich B. Jaeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230220462
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Patent number: 11649498
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: May 16, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20220243269
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Patent number: 11352668
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 7, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20220106588
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating long DNA fragments for high-throughput spatial indexing. Some embodiments include preparation of nucleic acid libraries within the bead, wherein the bead includes pores that allow diffusion of reagents while retaining genetic material.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 7, 2022
    Inventors: Yir-Shyuan Wu, Filiz Gorpe-Yasar, Tarun Kumar Khurana, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Patent number: 11180752
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating long DNA fragments for high-throughput spatial indexing. Some embodiments include preparation of nucleic acid libraries within the bead, wherein the bead includes pores that allow diffusion of reagents while retaining genetic material.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 23, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Yir-Shyuan Wu, Filiz Gorpe-Yasar, Tarun Kumar Khurana, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20200216895
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Application
    Filed: July 31, 2018
    Publication date: July 9, 2020
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20190249171
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating long DNA fragments for high-throughput spatial indexing. Some embodiments include preparation of nucleic acid libraries within the bead, wherein the bead includes pores that allow diffusion of reagents while retaining genetic material.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 15, 2019
    Inventors: Yir-Shyuan Wu, Filiz Gorpe-Yasar, Tarun Kumar Khurana, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi