Patents by Inventor Erich Steinhardt

Erich Steinhardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10267167
    Abstract: Disclosed is a blade element of a turbomachine, in particular of a gas turbine, which comprises a fastening element (10) with which the blade element is arranged in a receptacle (11) of the turbomachine. in the region of the fastening element, the blade element has a core region (18) and an envelope region (19) which at least partially envelops the core region. The core region is formed from a blade base material which is more brittle than the envelope material of the envelope region, and the envelope region is formed by a coating. The envelope material is a blade base material which has been modified to achieve a higher ductility or is a pseudoelastic or superelastic material.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: April 23, 2019
    Assignee: MTU Aero Engines AG
    Inventors: Erich Steinhardt, Wilfried Smarsly, André Werner
  • Patent number: 10001083
    Abstract: A turbofan aircraft engine having a primary duct (C), including a combustion chamber (BK), a first turbine (HT) disposed downstream of the combustion chamber, a compressor (HC) disposed upstream of the combustion chamber and coupled (W1) to the first turbine, and a second turbine (L) disposed downstream of the first turbine and coupled (W2) via a speed reduction mechanism (G) to a fan (F) for feeding a secondary duct (B) of the turbofan aircraft engine. A square of a ratio of a maximum blade diameter (DF) of the fan to a maximum blade diameter (DL) of the second turbine is at least 3.5, in particular at least 4.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: June 19, 2018
    Assignee: MTU Aero Engines AG
    Inventors: Klaus Peter Rued, Werner Humhauser, Hermann Klingels, Rudolf Stanka, Eckart Heinrich, Hans-Peter Hackenberg, Stefan Weber, Claus Riegler, Erich Steinhardt, Jochen Gier, Manfred Feldmann, Norbert Huebner, Karl Maar
  • Publication number: 20170159609
    Abstract: The invention relates to a turbofan aircraft engine that comprises a primary duct including a combustion chamber; a first turbine disposed downstream of the combustion chamber; a compressor disposed upstream of the combustion chamber and coupled to the first turbine; and a second turbine disposed downstream of the first turbine and coupled to a fan for feeding a secondary duct of the turbofan aircraft engine. The bypass ratio of the inlet area of the secondary duct to the inlet area of the primary duct is at least 7 and the second turbine comprises at least two stages. The mean outer radius of the last stage of the second turbine divided by the length of the second turbine is at least 1.4.
    Type: Application
    Filed: April 5, 2016
    Publication date: June 8, 2017
    Inventors: Carsten SCHOENHOFF, Rudolf STANKA, Erich STEINHARDT, Claus RIEGLER, Stephen Royston WILLIAMS, Hans-Peter HACKENBERG, Eckart HENRICH, Stefan WEBER, Klaus Peter RUED, Hermann KLINGELS, Patrick WACKERS, Christoph BICHLMAIER, Stefan BUSAM, Matthias KROBOTH, Norbert HUEBNER
  • Publication number: 20170159573
    Abstract: The invention relates to a turbofan aircraft engine that comprises a primary duct including a combustion chamber; a first turbine disposed downstream of the combustion chamber; a compressor disposed upstream of the combustion chamber and coupled to the first turbine; and a second turbine disposed downstream of the first turbine and coupled to a fan for feeding a secondary duct of the turbofan aircraft engine. The bypass ratio of the inlet area of the secondary duct to the inlet area of the primary duct is at least 7 and the second turbine comprises at least two stages. For the first stage the mean radius r of a stator vane expressed in inch divided by the number of stator vanes is at least 0.18.
    Type: Application
    Filed: April 5, 2016
    Publication date: June 8, 2017
    Inventors: Carsten SCHOENHOFF, Rudolf STANKA, Erich STEINHARDT, Claus RIEGLER, Stephen Royston WILLIAMS, Hans-Peter HACKENBERG, Eckart HENRICH, Stefan WEBER, Klaus Peter RUED, Hermann KLINGELS, Patrick WACKERS, Christoph BICHLMAIER, Stefan BUSAM, Matthias KROBOTH, Norbert HUEBNER
  • Publication number: 20170122118
    Abstract: Disclosed is a blade element of a turbomachine, in particular of a gas turbine, which comprises a fastening element (10) with which the blade element is arranged in a receptacle (11) of the turbomachine. in the region of the fastening element, the blade element has a core region (18) and an envelope region (19) which at least partially envelops the core region. The core region is formed from a blade base material which is more brittle than the envelope material of the envelope region, and the envelope region is formed by a coating. The envelope material is a blade base material which has been modified to achieve a higher ductility or is a pseudoelastic or superelastic material.
    Type: Application
    Filed: January 9, 2017
    Publication date: May 4, 2017
    Inventors: Erich STEINHARDT, Wilfried SMARSLY, André WERNER
  • Patent number: 9551231
    Abstract: Disclosed is a blade element of a turbomachine, in particular of a gas turbine, which comprises a fastening element (10) with which the blade element is arranged in a receptacle (11) of the turbomachine. In the region of the fastening element, the blade element has a core region (18) and an envelope region (19) which at least partially envelops the core region. The core region is formed from a blade base material which is more brittle than the envelope material of the envelope region, and the envelope region is formed by a coating. The envelope material is a blade base material which has been modified to achieve a higher ductility or is a pseudoelastic or superelastic material.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: January 24, 2017
    Assignee: MTU AERO ENGINES AG
    Inventors: Erich Steinhardt, Wilfried Smarsly, André Werner
  • Publication number: 20160032826
    Abstract: A turbofan aircraft engine has at least one stage pressure ratio is at least 1.5, and a quotient of the total blade count divided by 110 is less than a difference ([(p1/p2)?1]) of the total pressure ratio minus one, and the total pressure ratio is greater than 4.5, and the turbine has at least two and no more than five turbine stages; and/or a product (An2) of an exit area (AL) of the second turbine and a square of a rotational speed of the second turbine at the design point is at least 4.5·1010 [in2·rpm2], and a blade tip velocity (uTIP) of at least one turbine stage of the second turbine at the design point is at least 400 meters per second. A jet and method are also provided.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 4, 2016
    Inventors: Klaus Peter Rued, Werner Humhauser, Hermann Klingels, Rudolf Stanka, Eckart Heinrich, Hans-Peter Hackenberg, Claus Riegler, Erich Steinhardt, Jochen Gier, Manfred Feldmann, Norbert Huebner, Karl Maar, Stefan Weber
  • Publication number: 20160017797
    Abstract: A turbofan aircraft engine having a primary duct (C), including a combustion chamber (BK), a first turbine (HT) disposed downstream of the combustion chamber, a compressor (HC) disposed upstream of the combustion chamber and coupled (W1) to the first turbine, and a second turbine (L) disposed downstream of the first turbine and coupled (W2) via a speed reduction mechanism (G) to a fan (F) for feeding a secondary duct (B) of the turbofan aircraft engine. A square of a ratio of a maximum blade diameter (DF) of the fan to a maximum blade diameter (DL) of the second turbine is at least 3.5, in particular at least 4.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 21, 2016
    Inventors: Klaus Peter RUED, Werner Humhauser, Hermann Klingels, Rudolf Stanka, Eckart Heinrich, Hans-Peter Hackenberg, Stefan Weber, Claus Rieger, Erich Steinhardt, Jochen Gier, Manfred Feldmann, Norbert Huebner, Karl Maar
  • Patent number: 8936442
    Abstract: A method for manufacturing an integrally bladed rotor (10), in particular for a gas turbine, including the following method steps: preparing a rotor base member (12) having at least one first weld surface (16) and one blade (14) having a second weld surface (18); positioning the rotor base member (12) and the blade (14) in such a way that a join zone (20) is formed between the first and second weld surface (16, 18); and filling the join zone (20) with metal powder (24) and the laser welding or electron beam welding of the metal powder (24). An integrally bladed rotor (10) has a join zone (20) between the rotor base member (12) and blades (14), the join zone (20) being filled with welded metal powder (24).
    Type: Grant
    Filed: January 30, 2010
    Date of Patent: January 20, 2015
    Assignee: MTU Aero Engines GmbH
    Inventors: Thomas Uihlein, Erich Steinhardt
  • Publication number: 20140044549
    Abstract: Disclosed is a blade element of a turbomachine, in particular of a gas turbine, which comprises a fastening element (10) with which the blade element is arranged in a receptacle (11) of the turbomachine. In the region of the fastening element, the blade element has a core region (18) and an envelope region (19) which at least partially envelops the core region. The core region is formed from a blade base material which is more brittle than the envelope material of the envelope region, and the envelope region is formed by a coating. The envelope material is a blade base material which has been modified to achieve a higher ductility or is a pseudoelastic or superelastic material.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 13, 2014
    Applicant: MTU AERO ENGINES AG
    Inventors: Erich Steinhardt, Wilfried Smarsly, André Werner
  • Patent number: 8356741
    Abstract: The invention relates to a method for producing a blade tip plating (20) on a blade (10) for a turbomachine, in particular on a high-pressure rotating compressor blade for a gas turbine, comprising the following steps: —producing a particle composite material (24) having embedded hard material particles (18); —placing the panicle composite material (24) on a solder (30) applied to the blade tip (16); and—healing the solder (30).
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: January 22, 2013
    Assignee: MTU Aero Engines GmbH
    Inventors: Thomas Uihlein, Erich Steinhardt, Werner Humhauser
  • Publication number: 20110290861
    Abstract: The invention relates to a method for producing a blade tip plating (20) on a blade (10) Tor a lurhomachine, in particular on a high-pressure rotating compressor blade lor a gas turbine, comprising the following steps:—producing a particle composite material (24) having embedded hard material particles (18);—placing the panicle composite material (24) on a solder (30) applied (o the blade tip (16): and—healing the solder (30).
    Type: Application
    Filed: February 2, 2010
    Publication date: December 1, 2011
    Applicant: MTU AERO ENGINES GMBH
    Inventors: Thomas Uihlein, Erich Steinhardt, Werner Humhauser
  • Publication number: 20110217176
    Abstract: The invention relates to a method for connecting at least one turbine blade (10) to a turbine disk (18) or a turbine ring for a turbine stage of a turbomachine, particularly a thermal gas turbine, wherein first a connecting body (16) is formed on the at least one turbine blade (10) by means of a cold gas spraying method, and the connecting body (16) is subsequently connected to turbine disk (18) or to the turbine ring by means of a fusion-welding method. The invention further relates to a turbine stage for a turbine of a turbomachine as well as a turbomachine having a turbine.
    Type: Application
    Filed: October 16, 2009
    Publication date: September 8, 2011
    Applicant: MTU AERO ENGINES GMBH
    Inventors: Thomas Uihlein, Bertram Kopperger, Erich Steinhardt
  • Patent number: 7984547
    Abstract: A method is for manufacturing and/or repairing components, e.g., blades and blade segments, for gas turbines, e.g., for aircraft engines, by laser-powder build-up welding. Laser-powder build-up welding is performed using at least one substructure, the material build-up by a powder material occurring in the process of laser-powder build-up welding such that the or every substructure is at least in sections enclosed by the built-up powder material.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: July 26, 2011
    Assignee: MTU Aero Engines GmbH
    Inventor: Erich Steinhardt
  • Patent number: 7950147
    Abstract: A method for producing gas turbine components, in particular blades, blade sections or rotors with integral blades for a jet engine is provided. The method comprises at least the following steps: preparation of at least one metallic powder and at least one expanding agent; mixing of the metallic powder or each metallic powder with the expanding agent or each expanding agent; compression of the resultant mixture to form at least one semi-finished product; expansion of the semi-finished product or each semi-finished product by heating to achieve a defined degree of expansion; termination of the expansion process by cooling, once the defined degree of expansion has been reached.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: May 31, 2011
    Assignee: MTU Aero Engines GmbH
    Inventors: Reinhold Meier, Erich Steinhardt
  • Patent number: 7775766
    Abstract: A static gas turbine component, especially for an aircraft engine, is formed at least partially region-wise of metal foam. An abradable shroud lining of metal foam and a carrier allow a radial through-flow of gas.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 17, 2010
    Assignee: MTU Aero Engines GmbH
    Inventors: Reinhold Meier, Erich Steinhardt
  • Publication number: 20090277009
    Abstract: A method for manufacturing and/or machining components, in particular gas turbine components such as blades, blade segments or integrally bladed rotors for an aircraft engine, is disclosed. In an embodiment, the method for manufacturing components, in particular gas turbine components, includes at least the following steps: a) providing a workpiece; b) milling the workpiece to provide a component to be manufactured; c) rounding the edges of the component and/or smoothing the surface of the component and/or hardening the surface of the component by a hydraulic method using a lubricant and/or coolant required for the milling.
    Type: Application
    Filed: December 21, 2004
    Publication date: November 12, 2009
    Applicant: MTU AERO ENGINES
    Inventors: Thorben Kotzbacher, Erich Steinhardt
  • Publication number: 20070122269
    Abstract: The invention relates to a gas turbine component, namely static gas turbine component, especially for an aircraft engine. According to the invention, the static gas turbine component is formed at least region-wise of metal foam.
    Type: Application
    Filed: December 9, 2004
    Publication date: May 31, 2007
    Inventors: Reinhold Meier, Erich Steinhardt
  • Publication number: 20070122606
    Abstract: A method for producing gas turbine components, in particular blades, blade sections or rotors with integral blades for a jet engine is provided. The method comprises at least the following steps: preparation of at least one metallic powder and at least one expanding agent; mixing of the metallic powder or each metallic powder with the expanding agent or each expanding agent; compression of the resultant mixture to form at least one semi-finished product; expansion of the semi-finished product or each semi-finished product by heating to achieve a defined degree of expansion; termination of the expansion process by cooling, once the defined degree of expansion has been reached.
    Type: Application
    Filed: November 24, 2004
    Publication date: May 31, 2007
    Applicant: MTU Aero Engines GmbH
    Inventors: Reinhold Meier, Erich Steinhardt
  • Publication number: 20070007260
    Abstract: A method is for manufacturing and/or repairing components, e.g., blades and blade segments, for gas turbines, e.g., for aircraft engines, by laser-powder build-up welding. Laser-powder build-up welding is performed using at least one substructure, the material build-up by a powder material occurring in the process of laser-powder build-up welding such that the or every substructure is at least in sections enclosed by the built-up powder material.
    Type: Application
    Filed: July 29, 2004
    Publication date: January 11, 2007
    Inventor: Erich Steinhardt