Patents by Inventor Erik C. Kramme

Erik C. Kramme has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220370245
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A spatial measurement system generates a measurement beam and measure a spatial disposition of an eye. A processor is coupled to the laser and the spatial measurement system, the processor comprising a tangible medium embodying instructions to determine a spatial model of the eye in an eye coordinate reference system based on the measurement beam. The spatial model is mapped from the eye coordinate reference system to a machine coordinate reference system. A laser fragmentation pattern is determined based on a plurality of laser fragmentation parameters. The laser fragmentation pattern and the spatial model is rotated by a first rotation angle such that the spatial model is aligned with the reference axis of the machine coordinate reference system and the rotated laser fragmentation pattern is aligned with the corneal incision.
    Type: Application
    Filed: August 4, 2022
    Publication date: November 24, 2022
    Inventors: Rajeshwari Srinivasan, Javier G. Gonzalez, Erik C. Kramme
  • Patent number: 11406537
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A spatial measurement system generates a measurement beam and measure a spatial disposition of an eye. A processor is coupled to the laser and the spatial measurement system, the processor comprising a tangible medium embodying instructions to determine a spatial model of the eye in an eye coordinate reference system based on the measurement beam. The spatial model is mapped from the eye coordinate reference system to a machine coordinate reference system. A laser fragmentation pattern is determined based on a plurality of laser fragmentation parameters. The laser fragmentation pattern and the spatial model is rotated by a first rotation angle such that the spatial model is aligned with the reference axis of the machine coordinate reference system and the rotated laser fragmentation pattern is aligned with the corneal incision.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 9, 2022
    Assignee: AMO DEVELOPMENT, LLC
    Inventors: Rajeshwari Srinivasan, Javier G. Gonzalez, Erik C. Kramme
  • Publication number: 20190358084
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A spatial measurement system generates a measurement beam and measure a spatial disposition of an eye. A processor is coupled to the laser and the spatial measurement system, the processor comprising a tangible medium embodying instructions to determine a spatial model of the eye in an eye coordinate reference system based on the measurement beam. The spatial model is mapped from the eye coordinate reference system to a machine coordinate reference system. A laser fragmentation pattern is determined based on a plurality of laser fragmentation parameters. The laser fragmentation pattern and the spatial model is rotated by a first rotation angle such that the spatial model is aligned with the reference axis of the machine coordinate reference system and the rotated laser fragmentation pattern is aligned with the corneal incision.
    Type: Application
    Filed: June 13, 2019
    Publication date: November 28, 2019
    Inventors: Rajeshwari Srinivasan, Javier G. Gonzalez, Erik C. Kramme
  • Patent number: 10327953
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A spatial measurement system generates a measurement beam and measure a spatial disposition of an eye. A processor is coupled to the laser and the spatial measurement system, the processor comprising a tangible medium embodying instructions to determine a spatial model of the eye in an eye coordinate reference system based on the measurement beam. The spatial model is mapped from the eye coordinate reference system to a machine coordinate reference system. A laser fragmentation pattern is determined based on a plurality of laser fragmentation parameters. The laser fragmentation pattern and the spatial model is rotated by a first rotation angle such that the spatial model is aligned with the reference axis of the machine coordinate reference system and the rotated laser fragmentation pattern is aligned with the corneal incision.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 25, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Rajeshwari Srinivasan, Javier G. Gonzalez, Erik C. Kramme
  • Publication number: 20160106588
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A spatial measurement system generates a measurement beam and measure a spatial disposition of an eye. A processor is coupled to the laser and the spatial measurement system, the processor comprising a tangible medium embodying instructions to determine a spatial model of the eye in an eye coordinate reference system based on the measurement beam. The spatial model is mapped from the eye coordinate reference system to a machine coordinate reference system. A laser fragmentation pattern is determined based on a plurality of laser fragmentation parameters. The laser fragmentation pattern and the spatial model is rotated by a first rotation angle such that the spatial model is aligned with the reference axis of the machine coordinate reference system and the rotated laser fragmentation pattern is aligned with the corneal incision.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 21, 2016
    Inventors: Rajeshwari Srinivasan, Javier G. Gonzalez, Erik C. Kramme
  • Patent number: 9295582
    Abstract: An apparatus and method for controlling fluid flow to an ocular region is provided. The apparatus includes a control unit having a processor, a user interface configured to receive data from the processor and provide information to an operator, and a memory unit configured to provide information to the processor. The memory unit includes a lookup table configured with a plurality of fluid parameter related conditions potentially expected to be encountered during a phacoemulsification procedure and a plurality of warning entries, each warning entry associated with fluid parameter related conditions potentially expected to be encountered during the phacoemulsification procedure. Each warning entry corresponding to a level of performance outside a predetermined range is conveyed to the operator via the user interface and in certain instances functionality of the apparatus may be altered.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 29, 2016
    Inventors: Paul W. Rockley, Erik C. Kramme, Thomas Buico
  • Publication number: 20140276897
    Abstract: An apparatus and method for controlling fluid flow to an ocular region is provided. The apparatus includes a control unit having a processor, a user interface configured to receive data from the processor and provide information to an operator, and a memory unit configured to provide information to the processor. The memory unit includes a lookup table configured with a plurality of fluid parameter related conditions potentially expected to be encountered during a phacoemulsification procedure and a plurality of warning entries, each warning entry associated with fluid parameter related conditions potentially expected to be encountered during the phacoemulsification procedure. Each warning entry corresponding to a level of performance outside a predetermined range is conveyed to the operator via the user interface and in certain instances functionality of the apparatus may be altered.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Paul W. Rockley, Erik C. Kramme, Thomas Buico