Patents by Inventor Erik C. Scher

Erik C. Scher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190022626
    Abstract: Heterogeneous catalysts with optional dopants are provided. The catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2+ hydrocarbons. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: February 13, 2018
    Publication date: January 24, 2019
    Inventors: Wayne P. Schammel, Anja Rumplecker, Fabio R. Zurcher, Erik C. Scher, Joel M. Cizeron, Joel Gamoras
  • Patent number: 10183900
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: January 22, 2019
    Assignee: SILURIA TECHNOLOGIES, INC.
    Inventors: Greg Nyce, Erik C. Scher, Ajay Madgavkar, Samuel Weinberger, Rahul Iyer, Lawrence Peck, Joel Herger, Benjamin Saydah
  • Publication number: 20190010096
    Abstract: Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogeneous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: February 5, 2018
    Publication date: January 10, 2019
    Inventors: Wayne P. Schammel, Anja Rumplecker, Joel M. Cizeron, Erik C. Scher, Fabio R. Zurcher, Greg Nyce, Jarod McCormick, Marian Alcid, Joel Gamoras, Daniel Rosenberg, Erik-Jan Ras
  • Publication number: 20180305273
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Application
    Filed: November 10, 2017
    Publication date: October 25, 2018
    Inventors: Bipinkumar PATEL, Greg NYCE, Peter CZERPAK, Jarod McCORMICK, Guido RADAELLI, Erik C. SCHER, Joel CIZERON, Rahul IYER, Carlos FAZ, William MICHALAK, Tim A. RAPPOLD, Ron RUNNEBAUM, Aihua ZHANG, Peter BERGSTROM
  • Publication number: 20180222818
    Abstract: The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.
    Type: Application
    Filed: September 8, 2017
    Publication date: August 9, 2018
    Inventors: Guido Radaelli, Humera A. Rafique, Srinivas Vuddagiri, Erik C. Scher, Jarod McCormick, Joel Cizeron, Bipinkumar Patel, Satish Lakhapatri
  • Publication number: 20180215682
    Abstract: The present disclosure provides methods for producing hydrocarbon compounds, which may comprise directing a feed stream comprising methane (CH4) and an oxidizing agent into an oxidative coupling of methane (OCM) unit to generate from at least a portion of the CH4 and the oxidizing agent an OCM effluent comprising the hydrocarbon compounds. A portion of the OCM effluent may be directed into a recycle loop that comprises (i) a hydrogenation unit that hydrogenates at least a portion of unsaturated hydrocarbons from the additional portion of the OCM effluent, and (ii) a methanation unit that reacts hydrogen with carbon monoxide or carbon dioxide from the additional portion of the OCM effluent in a methanation reaction to form CH4. The recycle loop may output a recycle stream comprising the CH4 generated by the methanation unit. At least a portion of the recycle stream may be directed into the OCM unit.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 2, 2018
    Inventors: Humera A. Rafique, Srinivas Vuddagiri, Guido Radaelli, Erik C. Scher, Jarod McCormick, Joel Cizeron
  • Patent number: 9963402
    Abstract: Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: May 8, 2018
    Assignee: Siluria Technologies, Inc.
    Inventors: Joel M. Cizeron, Erik C. Scher, Fabio R. Zurcher, Wayne P. Schammel, Greg Nyce, Anja Rumplecker, Jarod McCormick, Marian Alcid, Joel Gamoras, Daniel Rosenberg, Erik-Jan Ras
  • Publication number: 20180117579
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: June 20, 2017
    Publication date: May 3, 2018
    Inventors: Erik C. Scher, Fabio R. Zurcher, Joel M. Cizeron, Wayne P. Schammel, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce
  • Publication number: 20180118637
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: August 2, 2017
    Publication date: May 3, 2018
    Inventors: Fabio R. Zurcher, Erik C. Scher, Joel M. Cizeron, Wayne P. Schammel, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce, Anja Rumplecker, Jarod McCormick, Anna Merzlyak, Marian Alcid, Daniel Rosenberg, Erik-Jan Ras
  • Publication number: 20180117570
    Abstract: Catalysts, catalytic forms and formulations, and catalytic methods are provided. The catalysts and catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: August 2, 2017
    Publication date: May 3, 2018
    Inventors: Erik M. Freer, Wayne P. Schammel, Fabio R. Zurcher, Joel M. Cizeron, Jin Ki Hong, Anja Rumplecker, Sam Maurer, Joel Gamoras, Daniel Rosenberg, Erik C. Scher
  • Patent number: 9956544
    Abstract: Heterogeneous catalysts with optional dopants are provided. The catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2+ hydrocarbons. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: May 1, 2018
    Assignee: Siluria Technologies, Inc.
    Inventors: Wayne P. Schammel, Anja Rumplecker, Fabio R. Zurcher, Erik C. Scher, Joel M. Cizeron, Joel Gamoras
  • Publication number: 20180093931
    Abstract: Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: July 12, 2017
    Publication date: April 5, 2018
    Inventors: Wayne P. Schammel, Anja Rumplecker, Joel M. Cizeron, Erik C. Scher, Fabio R. Zurcher, Greg Nyce, Jarod McCormick, Marian Alcid, Joel Gamoras, Daniel Rosenberg, Erik-Jan Ras
  • Patent number: 9884763
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: February 6, 2018
    Assignee: NANOSYS, INC.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Balxin Qian, Jeffrey A. Whiteford
  • Publication number: 20170341997
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Application
    Filed: January 27, 2017
    Publication date: November 30, 2017
    Inventors: Greg Nyce, Erik C. Scher, Ajay Madgavkar, Samuel Weinberger, Rahul Iyer, Lawrence Peck, Joel Herger, Benjamin Saydah
  • Patent number: 9790144
    Abstract: The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 17, 2017
    Assignee: Siluria Technologies, Inc.
    Inventors: Guido Radaelli, Humera A. Rafique, Srinivas Vuddagiri, Erik C. Scher, Jarod McCormick, Joel Cizeron, Bipinkumar Patel, Satish Lakhapatri
  • Publication number: 20170283345
    Abstract: Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
    Type: Application
    Filed: November 18, 2016
    Publication date: October 5, 2017
    Inventors: Wayne P. Schammel, Julian Wolfenbarger, Milind Ajinkya, Jon McCarty, Joel M. Cizeron, Sam Weinberger, Justin Dwight Edwards, David Sheridan, Erik C. Scher, Jarod McCormick
  • Publication number: 20170260114
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Application
    Filed: October 26, 2016
    Publication date: September 14, 2017
    Inventors: Greg Nyce, Peter Czerpak, Carlos Faz, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Joel Cizeron
  • Patent number: 9751818
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: September 5, 2017
    Assignee: Siluria Technologies, Inc.
    Inventors: Fabio R. Zurcher, Erik C. Scher, Joel M. Cizeron, Wayne P. Schammel, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce, Anja Rumplecker, Jarod McCormick, Anna Merzlyak, Marian Alcid, Daniel Rosenberg, Erik-Jan Ras
  • Patent number: 9751079
    Abstract: Catalysts, catalytic forms and formulations, and catalytic methods are provided. The catalysts and catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: September 5, 2017
    Assignee: Silura Technologies, Inc.
    Inventors: Erik M. Freer, Wayne P. Schammel, Fabio R. Zurcher, Joel M. Cizeron, Jin Ki Hong, Anja Rumplecker, Sam Maurer, Joel Gamoras, Daniel Rosenberg, Erik C. Scher
  • Patent number: 9738571
    Abstract: Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: August 22, 2017
    Assignee: Siluria Technologies, Inc.
    Inventors: Wayne P. Schammel, Anja Rumplecker, Joel M. Cizeron, Erik C. Scher, Fabio R. Zurcher, Greg Nyce, Jarod McCormick, Marian Alcid, Joel Gamoras, Daniel Rosenberg, Erik-Jan Ras