Patents by Inventor Erik Daniel Engeberg

Erik Daniel Engeberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10156487
    Abstract: A tactile sensor includes a first insulating layer having a first array of electrically conductive strips embedded therein and extending in a first direction. An intermediate layer of conductive soft polymer material is positioned above the first insulating layer and the first array of said electrically conductive strips. A second insulating layer having a second array of electrically conductive strips embedded therein, which extend in a second direction which is different than the first direction, is positioned above the intermediate layer. The first array of electrically conductive strips are connected to the second array of electrically conductive strips, and both the first and second array of electrically conductive strips are also connected to an impedance measuring device.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: December 18, 2018
    Assignee: The University of Akron
    Inventors: Jae-Won Choi, Erik Daniel Engeberg, Morteza Vatani, Ho-Chan Kim, Thomas Swiger
  • Patent number: 9664717
    Abstract: A tactile sensor includes a flexible medium having electrically conductive strips embedded therein and extending in a first direction, said electrically conductive strips including conductive nanostructures dispersed in a flexible support material, said nanostructures selected from conductive nanowires, carbon nanotubes, and graphene, wherein each electrically conductive strip is connected at each end to an impedance measuring device that measures the impedance across each electrically conductive strip. The electrically conductive strips may be formed on a first layer of the flexible medium by using direct-write technology.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: May 30, 2017
    Assignee: The University of Akron
    Inventors: Jae-Won Choi, Erik Daniel Engeberg, Kye-Shin Lee, Ho-Chan Kim
  • Publication number: 20170059426
    Abstract: A tactile sensor includes a first insulating layer having a first array of electrically conductive strips embedded therein and extending in a first direction. An intermediate layer of conductive soft polymer material is positioned above the first insulating layer and the first array of said electrically conductive strips. A second insulating layer having a second array of electrically conductive strips embedded therein, which extend in a second direction which is different than the first direction, is positioned above the intermediate layer. The first array of electrically conductive strips are connected to the second array of electrically conductive strips, and both the first and second array of electrically conductive strips are also connected to an impedance measuring device.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 2, 2017
    Applicant: The University of Akron
    Inventors: Jae-Won Choi, Erik Daniel Engeberg, Morteza Vatani, Ho-Chan Kim, Thomas Swiger
  • Publication number: 20150109006
    Abstract: A tactile sensor includes a flexible medium having electrically conductive strips embedded therein and extending in a first direction, said electrically conductive strips including conductive nanostructures dispersed in a flexible support material, said nanostructures selected from conductive nanowires, carbon nanotubes, and graphene, wherein each electrically conductive strip is connected at each end to an impedance measuring device that measures the impedance across each electrically conductive strip. The electrically conductive strips may be formed on a first layer of the flexible medium by using direct-write technology.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 23, 2015
    Inventors: Jae-Won Choi, Erik Daniel Engeberg, Kye-Shin Lee, Ho-Chan Kim
  • Publication number: 20130344559
    Abstract: A nerve growth chamber includes a stimulation vessel defined by one or more sidewalls; at least one anode and at least one cathode positioned in the sidewall or sidewalls of the stimulation vessel; a conductive medium in the stimulation vessel; nerve tissue in the stimulation vessel; and a signal generator connecting the at least one anode and the at least one cathode and activated to generate a periodic AC signal at a desired frequency and amplitude, the periodic AC signal traveling through the conductive medium and affecting the growth of the nerve tissue. A method in accordance with the operation of the apparatus is also provided.
    Type: Application
    Filed: April 23, 2013
    Publication date: December 26, 2013
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Erik Daniel Engeberg, Rebecca Kuntz Willits
  • Patent number: 8588977
    Abstract: An apparatus in an example comprises a manipulator, a force sensor, a signal modulator, and a visual indicator. The manipulator is employed by a user. The force sensor determines a force signal from a force applied by the manipulator on a part of an environment of the user. The signal modulator is adjustable by the user to select a switch point for the visual indicator based on relative fragility of the part of the environment. The signal modulator employs the force signal and the switch point to control the visual indicator for the user.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 19, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Erik Daniel Engeberg, Sanford G. Meek
  • Publication number: 20100131101
    Abstract: An apparatus in an example comprises a manipulator, a force sensor, a signal modulator, and a visual indicator. The manipulator is employed by a user. The force sensor determines a force signal from a force applied by the manipulator on a part of an environment of the user. The signal modulator is adjustable by the user to select a switch point for the visual indicator based on relative fragility of the part of the environment. The signal modulator employs the force signal and the switch point to control the visual indicator for the user.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 27, 2010
    Inventors: Erik Daniel Engeberg, Sanford G. Meek