Patents by Inventor ERIK EDWARD JOSBERGER

ERIK EDWARD JOSBERGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977313
    Abstract: According to various embodiments, a tunable optical device comprises a tunable optical metasurface on a substrate with an integrated driver circuit. In some embodiments, the tunable optical device includes a photon shield layer to prevent optical radiation from disrupting operation of the driver circuit. In some embodiments, the tunable optical device includes a diagnostic circuit to detect and disable defective optical structures of the metasurface. In some embodiments, the tunable optical device includes an integrated heater circuit that maintains a liquid crystal of the metasurface above a minimum operating temperature. In some embodiments, the tunable optical device includes an integrated lidar sequencing controller, a steering pattern subcircuit, and a photodetector circuit.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: May 7, 2024
    Assignee: Lumotive, Inc.
    Inventors: Gleb M. Akselrod, Mark C. Weidman, Erik Edward Josberger, Tyler Williamson, Yizhak Sabba
  • Patent number: 11960155
    Abstract: A metasurface may include a substrate layer and a two-dimensional array of metallic optical pillars arranged in rows and columns. A tunable dielectric material with a tunable refractive index is positioned between row-adjacent optical resonators. A two-dimensional active-matrix driver includes integrated driver routing layer(s), capacitor layer(s), and/or transistor layer(s). The driver routing layers enable row and column addressing of the two-dimensional array of metallic pillars via a row conductor for each row of metallic pillars and a column conductor for each column of metallic pillars. A transistor layer includes transistor devices connected to and configured to be selectively driven by the row and column conductors. The capacitor layer includes a plurality of storage capacitors. Each metallic pillar is connected in parallel to one of the storage capacitors in the capacitor layer and one of the transistor devices in the transistor layer.
    Type: Grant
    Filed: October 5, 2023
    Date of Patent: April 16, 2024
    Assignee: Lumotive, Inc.
    Inventors: Gleb M. Akselrod, Erik Edward Josberger
  • Patent number: 11914266
    Abstract: In various embodiments, a tunable optical surface includes a dielectric substrate layer with an array of elongated metal rails extending from the dielectric substrate parallel to one another and spaced from one another to form channels therebetween. The channels are etched deeper into the dielectric substrate to form extended-depth channels. The depth of each extended-depth channel is greater than the height of adjacent elongated metal rails. The dimensions of the elongated metal rails and the extended-depth channels therebetween may be subwavelength with respect to an operational bandwidth. A tunable dielectric material that has a tunable refractive index, such as liquid crystal, is positioned within the extended-depth channels between adjacent elongated metal rails.
    Type: Grant
    Filed: June 5, 2023
    Date of Patent: February 27, 2024
    Assignee: Lumotive, Inc.
    Inventors: Gleb M. Akselrod, Lie “Larry” Zhao, Erik Edward Josberger, Laura Maria Pulido Mancera, Linda Gail Conway, Prasad Padmanabha Iyer
  • Patent number: 11851582
    Abstract: Subwavelength conducting particles can be arranged on conducting surfaces to provide arbitrary thermal emissivity spectra. For example, a thermal emissivity spectrum can be tailored to suppress a thermal signature of an object without sacrificing radiative cooling efficiency.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: December 26, 2023
    Assignee: Elwha LLC
    Inventors: Gleb M. Akselrod, Erik Edward Josberger, Mark C. Weidman
  • Publication number: 20230367171
    Abstract: According to various embodiments, a tunable optical device comprises a tunable optical metasurface on a substrate with an integrated driver circuit. In some embodiments, the tunable optical device includes a photon shield layer to prevent optical radiation from disrupting operation of the driver circuit. In some embodiments, the tunable optical device includes a diagnostic circuit to detect and disable defective optical structures of the metasurface. In some embodiments, the tunable optical device includes an integrated heater circuit that maintains a liquid crystal of the metasurface above a minimum operating temperature. In some embodiments, the tunable optical device includes an integrated lidar sequencing controller, a steering pattern subcircuit, and a photodetector circuit.
    Type: Application
    Filed: October 31, 2022
    Publication date: November 16, 2023
    Inventors: Gleb M. Akselrod, Mark C. Weidman, Erik Edward Josberger, Tyler Williamson, Yizhak Sabba
  • Patent number: 11493823
    Abstract: According to various embodiments, a tunable optical device comprises a tunable optical metasurface on a substrate with an integrated driver circuit. In some embodiments, the tunable optical device includes a photon shield layer to prevent optical radiation from disrupting operation of the driver circuit. In some embodiments, the tunable optical device includes a diagnostic circuit to detect and disable defective optical structures of the metasurface. In some embodiments, the tunable optical device includes an integrated heater circuit that maintains a liquid crystal of the metasurface above a minimum operating temperature. In some embodiments, the tunable optical device includes an integrated lidar sequencing controller, a steering pattern subcircuit, and a photodetector circuit.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: November 8, 2022
    Assignee: Lumotive, LLC
    Inventors: Gleb M. Akselrod, Mark C. Weidman, Erik Edward Josberger, Tyler Williamson, Yizhak Sabba
  • Patent number: 11487184
    Abstract: According to various embodiments, a tunable optical device comprises a tunable optical metasurface on a substrate with an integrated driver circuit. In some embodiments, the tunable optical device includes a photon shield layer to prevent optical radiation from disrupting operation of the driver circuit. In some embodiments, the tunable optical device includes a diagnostic circuit to detect and disable defective optical structures of the metasurface. In some embodiments, the tunable optical device includes an integrated heater circuit that maintains a liquid crystal of the metasurface above a minimum operating temperature. In some embodiments, the tunable optical device includes an integrated lidar sequencing controller, a steering pattern subcircuit, and a photodetector circuit.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: November 1, 2022
    Assignee: Lumotive, LLC
    Inventors: Gleb M. Akselrod, Mark C. Weidman, Erik Edward Josberger, Tyler Williamson, Yizhak Sabba
  • Patent number: 11487183
    Abstract: According to various embodiments, a cover is sealed over a metasurface on a substrate to create a sealed chamber. Liquid crystal, or another tunable refractive index dielectric material, is positioned within the sealed chamber around optical structures of the metasurface before or after the cover is sealed. For example, the liquid crystal may be injected through small vias or holes to fill a sealed chamber. In some embodiments, a glass cover is shaped or patterned with photoresist to protrude into the sealed chamber to reduce the thickness of the liquid crystal used to fill the sealed chamber. A driver to control the metasurface may be, for example, integrated within the substrate, be attached to exposed bond pads of the metasurface, and/or be embodied as a control layer connected to the metasurface through the substrate by through-substrate vias (TSVs).
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: November 1, 2022
    Assignee: Lumotive, LLC
    Inventors: Gleb M. Akselrod, Erik Edward Josberger, Mark C. Weidman, Prasad Padmanabha Iyer
  • Patent number: 11429008
    Abstract: According to various embodiments, a tunable optical metasurface includes an array of elongated resonator rails arranged parallel to one another. Liquid crystal is positioned within an optical field region between adjacent resonator rails. A controller can selectively apply a voltage differential pattern to the elongated resonator rails to adjust a phase response thereof. According to various embodiments, a cross-backplane reflector is utilized that allows for mid-array routing or edge-array routing of electrical connections between the controller and the resonator rails. The cross-backplane reflector comprises a plurality of elongated optical reflectors extending parallel to one another and perpendicular to the array of resonator rails. An optically transmissive (e.g., transparent) dielectric may electrically separate the resonator rails from the optical reflectors. A pattern of vias formed therein facilitates electrical connections between the optical reflectors and the resonator rails.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: August 30, 2022
    Assignee: Lumotive, LLC
    Inventors: Gleb M. Akselrod, Erik Edward Josberger, Mark C. Weidman, Prasad Padmanabha Iyer
  • Publication number: 20220186044
    Abstract: Subwavelength conducting particles can be arranged on conducting surfaces to provide arbitrary thermal emissivity spectra. For example, a thermal emissivity spectrum can be tailored to suppress a thermal signature of an object without sacrificing radiative cooling efficiency.
    Type: Application
    Filed: December 24, 2021
    Publication date: June 16, 2022
    Inventors: GLEB M. AKSELROD, ERIK EDWARD JOSBERGER, MARK C. WEIDMAN
  • Patent number: 11208568
    Abstract: Subwavelength conducting particles can be arranged on conducting surfaces to provide arbitrary thermal emissivity spectra. For example, a thermal emissivity spectrum can be tailored to suppress a thermal signature of an object without sacrificing radiative cooling efficiency.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: December 28, 2021
    Assignee: Elwha LLC
    Inventors: Gleb M. Akselrod, Erik Edward Josberger, Mark C. Weidman
  • Patent number: 10968522
    Abstract: The disclosure provides a method for fabricating a metallic optical metasurface having an array of hologram elements. The method includes forming a first copper layer protected with a conducting or dielectric barrier layer over a backplane structure by a damascene process. The first copper layer comprises a plurality of nano-gaps vertically extending from the backplane structure. The plurality of nano-gaps is filled with a dielectric material. The method also includes removing the dielectric material and a portion of the conducting or dielectric barrier layer to expose the portions in the nano-gaps of the first copper layer. The method may further include depositing a dielectric coating layer over the top portion and exposed side portions of the first copper layer to form a protected first copper layer, and filling the gaps with an electrically-tunable dielectric material that has an electrically-tunable refractive index.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: April 6, 2021
    Assignee: Elwha LLC
    Inventors: Gleb M. Akselrod, Erik Edward Josberger, Mark C. Weidman
  • Publication number: 20190301025
    Abstract: The disclosure provides a method for fabricating a metallic optical metasurface having an array of hologram elements. The method includes forming a first copper layer protected with a conducting or dielectric barrier layer over a backplane structure by a damascene process. The first copper layer comprises a plurality of nano-gaps vertically extending from the backplane structure. The plurality of nano-gaps is filled with a dielectric material. The method also includes removing the dielectric material and a portion of the conducting or dielectric barrier layer to expose the portions in the nano-gaps of the first copper layer. The method may further include depositing a dielectric coating layer over the top portion and exposed side portions of the first copper layer to form a protected first copper layer, and filling the gaps with an electrically-tunable dielectric material that has an electrically-tunable refractive index.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 3, 2019
    Inventors: Gleb M. Akselrod, Erik Edward Josberger, Mark C. Weidman
  • Publication number: 20180334579
    Abstract: Subwavelength conducting particles can be arranged on conducting surfaces to provide arbitrary thermal emissivity spectra. For example, a thermal emissivity spectrum can be tailored to suppress a thermal signature of an object without sacrificing radiative cooling efficiency.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 22, 2018
    Inventors: GLEB M. AKSELROD, ERIK EDWARD JOSBERGER, MARK C. WEIDMAN