Patents by Inventor Erik Engeberg

Erik Engeberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230264794
    Abstract: An underwater robot apparatus that is capable of omnidirectional lateral movement using Bluetooth, depth, temperature, and light sensors for monitoring the marine environment. The apparatus is an adaptive, three-axis control soft robotic apparatus embedded with sensors and can swim in three dimensions to record aquatic life. An adaptive controller within the soft robotic apparatus produces positive upward motion despite its negative buoyancy and additional pressure vessel mass. A submersible impellor pump is connected to each actuator grouping wherein propulsion is created by filling and emptying of nine tentacles with surrounding ambient water. The apparatus produces maximum thrust using a full stroke actuation scheme at a frequency of 0.3 Hz. In addition to upward motion, the apparatus effects lateral motion utilizing two of three sets of actuator groups for more complex travel.
    Type: Application
    Filed: June 16, 2021
    Publication date: August 24, 2023
    Inventor: Erik ENGEBERG
  • Patent number: 10543111
    Abstract: A sliding mode biomimetic (BSM) controller for a prosthetic device, such as a prosthetic hand, includes an input classification component that receives electromyogram (EGM) signals from two or more electromyogram (EGM) sensors that are positioned on an amputee's body. The input classification component compares the EGM input signals based on predetermined activation threshold values and identifies an input class to determine the amputee's intended movement of the prosthetic device. A finite state machine utilizes the current position of the prosthetic hand and the identified input class to identify the coordinates of a lookup table to determine the next state or position of the prosthetic device. As a result, the biomimetic controller is able to simultaneously control two or more degrees of freedom (DOFs) or functions of the prosthetic hand using only two EGM input signals.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: January 28, 2020
    Assignee: THE UNIVERSITY OF AKRON
    Inventor: Erik Engeberg
  • Patent number: 10092349
    Abstract: A variable-frequency stimulator for electrosurgery includes an impedance analyzer to identify the electrical impedance of biological tissue being treated by an electrosurgical instrument, such as a laparoscope. Based on the identified tissue impedance, a controller adjusts the frequency of electrical current delivered to the electrosurgical instrument to reduce, minimize or normalize the impedance of the tissue, thereby preventing collateral damage to the tissue in and about the surgical site. Additionally, the laparoscope may be configured with multiple electrically conductive grasping arms that are used to deliver the electrical current to the surgical site. The conductive grasping arms provide multiple current paths for the electrical current to flow, thus concentrating the electrical current at the surgical site during an electrosurgical procedure.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: October 9, 2018
    Assignee: THE UNIVERSITY OF AKRON
    Inventors: Erik Engeberg, Eric Espinal
  • Patent number: 9745967
    Abstract: A thermal energy harvesting device includes a rotatable shaft and a shape memory alloy element secured to rotatable shaft. The shape memory alloy element is adapted to undergo a shape memory effect upon reaching a transition temperature, which causes rotation of the rotatable shaft. The rotatable shaft may be operatively connected to a generator or tachometer to convert the rotation of the shaft into electrical energy, which may then be stored in a rechargeable battery. In certain embodiments a gear box may be provided to increase the speed of rotation, and thereby increase the amount of electrical energy created.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: August 29, 2017
    Assignee: The University of Akron
    Inventors: Subramaniya Hariharan, Erik Engeberg
  • Publication number: 20140128992
    Abstract: A sliding mode biomimetic (BSM) controller for a prosthetic device, such as a prosthetic hand, includes an input classification component that receives electromyogram (EGM) signals from two or more electromyogram (EGM) sensors that are positioned on an amputee's body. The input classification component compares the EGM input signals based on predetermined activation threshold values and identifies an input class to determine the amputee's intended movement of the prosthetic device. A finite state machine utilizes the current position of the prosthetic hand and the identified input class to identify the coordinates of a lookup table to determine the next state or position of the prosthetic device. As a result, the biomimetic controller is able to simultaneously control two or more degrees of freedom (DOFs) or functions of the prosthetic hand using only two EGM input signals.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Applicant: THE UNIVERSITY OF AKRON
    Inventor: Erik Engeberg
  • Publication number: 20140083095
    Abstract: A thermal energy harvesting device includes a rotatable shaft and a shape memory alloy element secured to rotatable shaft. The shape memory alloy element is adapted to undergo a shape memory effect upon reaching a transition temperature, which causes rotation of the rotatable shaft. The rotatable shaft may be operatively connected to a generator or tachometer to convert the rotation of the shaft into electrical energy, which may then be stored in a rechargeable battery. In certain embodiments a gear box may be provided to increase the speed of rotation, and thereby increase the amount of electrical energy created.
    Type: Application
    Filed: May 2, 2012
    Publication date: March 27, 2014
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Subramaniya Hariharan, Erik Engeberg
  • Publication number: 20140074084
    Abstract: A variable-frequency stimulator for electrosurgery includes an impedance analyzer to identify the electrical impedance of biological tissue being treated by an electrosurgical instrument, such as a laparoscope. Based on the identified tissue impedance, a controller adjusts the frequency of electrical current delivered to the electrosurgical instrument to reduce, minimize or normalize the impedance of the tissue, thereby preventing collateral damage to the tissue in and about the surgical site. Additionally, the laparoscope may be configured with multiple electrically conductive grasping arms that are used to deliver the electrical current to the surgical site. The conductive grasping arms provide multiple current paths for the electrical current to flow, thus concentrating the electrical current at the surgical site during an electrosurgical procedure.
    Type: Application
    Filed: May 4, 2012
    Publication date: March 13, 2014
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Erik Engeberg, Eric Espinal