Patents by Inventor Erik Griswold

Erik Griswold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120296222
    Abstract: A medical device adapted to be implanted in a vessel of a human body includes a housing that contains means for performing medical functions and an anchor for supporting the housing in an intended location and orientation within the vessel. The anchor is expandable from a low profile configuration adapted for delivery to an expanded configuration for engagement with the vessel wall. The anchor and delivery device are adapted to enable the medical device to be retrieved and repositioned or removed from the vessel. The anchor is adapted to apply sufficient force against the vessel wall to maintain the anchor in place but less force than that required to provide scaffolding support for the vessel.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Erik Griswold, James Calvin Allan, Rudy Beasley
  • Publication number: 20120271134
    Abstract: A delivery device for implanting a medical device that includes an expandable fixation member adapted to fix the position of the medical device within a lumen of a human body. The delivery device has an inner shaft rotatably disposed in a tubular outer shaft. A retention member is secured to and rotatable with the inner shaft and has a free end and a retainer portion adapted to protrude outwardly through an exit aperture in the outer shaft to extend circumferentially about the exterior of the outer shaft. The fixation member of the medical device may be retained on the tubular shaft in a low profile configuration by the outwardly protruding retainer portion and may be released to expand upon retraction of the retainer portion in response to rotation of the inner shaft.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: James Calvin Allan, Don Tran, Erik Griswold, Rudy Beasley, Arvind Srinivas
  • Publication number: 20120239002
    Abstract: A catheter system for delivery of a medical implant, the system including a cap removably covering an open distal end of a catheter. An elongate actuator wire is fixedly attached to the cap, extends through a lumen of the catheter, and has a distal region that can assume a pre-formed shape when unconstrained by the catheter lumen. The pre-formed shape of the wire distal region defines a bend adapted to laterally deflect the cap from the catheter distal end when assuming the pre-formed shape. At least a portion of the lumen adjacent the catheter distal end is sized and shaped to slidably receive the medical implant alongside the actuator wire. A push rod extends through the catheter lumen for ejecting the medical implant from the catheter distal end. Methods of using the invention are also disclosed.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 20, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20120197350
    Abstract: This disclosure is directed to an implantable medical device having a communication dipole configured in accordance with the techniques described herein. In one example, the disclosure is directed to an implantable medical device comprising a housing that encloses at least a communication module, a first electrode of a communication dipole electrically coupled to the communication module and an electrically conductive fixation mechanism that is electrically coupled to a portion of the housing and wherein a portion of the fixation mechanism is configured to function as at least part of a second electrode of the communication dipole. The electrically conductive fixation mechanism includes a dielectric material that covers at least part of a surface of the fixation mechanism. The communication module is configured to transmit or receive a modulated signal between the first electrode and second electrode of the communication dipole.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Inventors: Jonathan P. Roberts, Can Cinbis, David J. Peichel, James C. Allan, James D. Reinke, Kamal Deep Mothilal, Erik Griswold, George Patras
  • Patent number: 8226705
    Abstract: A method of manufacturing a stent includes forming a wave form having a plurality of struts and a plurality of crowns. Each crown connects two adjacent struts. The wave form has a center and two portions extending from opposite sides of the center. The method includes wrapping a first portion of the wave form about a longitudinal axis in a first direction at a first pitch angle, starting at the center of the wave form, to define at least one turn oriented at the first pitch angle, and wrapping a second portion of the wave form about the longitudinal axis in a second direction that is opposite the first direction at a second pitch angle, starting at the center of the wave form, to define at least one turn oriented at the second pitch angle. The first pitch angle is opposite the second pitch angle.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 24, 2012
    Assignee: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20120108986
    Abstract: An implantable medical device, such as a sensor for monitoring a selected internally detectable physiological parameter of a patient, is attached to a fixation member that is deployable within the patient to position and orient the sensor to enable it to perform its function. The fixation member may be configured to lie in a single plane when deployed or may be tubular in shape. The attachment of the housing and fixation member includes providing the fixation member with a linear attachment strut that is non-circular in cross section and providing the housing with external members that define an elongate channel, non-circular in cross section and receptive to the attachment strut. The attachment strut can be inserted transversely into the channel and the external member can be crimped over the strut to secure the housing and fixation member together.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 3, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Rudy Beasley, Erik Griswold, James Calvin Allan, George Patras, Kamal Deep Mothilal, Albert Dunfee
  • Publication number: 20120108922
    Abstract: An implantable medical device, such as a sensor for monitoring a selected internally detectable physiological parameter of a patient, is attached to a fixation member that is deployable within the patient to position and orient the sensor to enable it to perform its function. The fixation member may be configured to lie in a single plane when deployed or may be tubular in shape. The attachment of the housing and fixation member includes providing the fixation member with a linear attachment strut that is non-circular in cross section and providing the housing with external members that define an elongate channel, non-circular in cross section and receptive to the attachment strut. The attachment strut can be inserted transversely into the channel and the external member can be crimped over the strut to secure the housing and fixation member together.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 3, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Jon D. Schell, George Patras, Kamal Deep Mothilal, Erik Griswold, James Calvin Allan, Albert Dunfee, Rudy Beasley
  • Publication number: 20120101413
    Abstract: Catheter apparatuses having expandable mesh structures and associated systems and methods for intravascular renal neuromodulation are disclosed herein. A catheter treatment device includes an expandable mesh structure configured to position an energy delivery element in contact with a renal artery via an intravascular path. The mesh structure can assume an expanded configuration for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function. A collapsed configuration may facilitate insertion and/or removal of the catheter or repositioning of the energy delivery element within the renal artery.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 26, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.I.
    Inventors: Robert J. Beetel, Erik Griswold, Denise Zarins, Maria G. Aboytes
  • Publication number: 20120018496
    Abstract: A method for forming a wave form for a stent includes clamping a formable material to a first die including a forming portion; drawing the formable material with the first die in a first direction; clamping the formable material to a second die at a location spaced from the first die, the second die including a forming surface; moving a forming member in between the first die and the second die in a second direction substantially perpendicular to the first direction and into contact with the formable material; and deforming the formable material by moving the forming member in the second direction while moving the first die towards the second die and/or moving the second die towards the first die.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: PJ CARMODY, Sean Moynihan, Gerard Clery, Erik Griswold
  • Publication number: 20120012014
    Abstract: A method for forming a wave form for a stent. The wave form includes a plurality of substantially straight portions and a plurality of curved portions. Each curved portion connects adjacent substantially straight portions. The method includes feeding a formable material between a first die and a second die, the first die having a protruding surface in the shape of the wave form, and the second die having a recessed surface in the shape of the wave form complementing the protruding surface of the first die, pressing the formable material with the protruding surface of the first die into contact with the recessed surface of the second die, and shearing the wave form from the formable material with shearing forces created by the pressing.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Justin Goshgarian, Erik Griswold
  • Publication number: 20110270339
    Abstract: Systems and methods of delivering and retaining a leadless medical implant to tissue, wherein a docking base and the implant are sequentially delivered to an implantation site. In a first stage, the docking base is delivered and deployed into tissue at an implantation site. In a second stage, the implant is navigated through the vasculature and coupled to the docking base. Various mechanisms for navigating the implant to the previously implanted docking base and coupling the implant thereto are described. Navigational mechanisms include advancing the implant over a proximally extending wire portion that is releasably attached to the previously implanted docking base, utilizing fluoroscopic visualization to guide the implant to a previously implanted docking base that is at least partially radiopaque and utilizing electromagnetism to guide the implant to a previously implanted docking base that is electro-magnetizable.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventors: Robert Murray, III, Gianfranco Pellegrini, Susan Rea Peterson, Travis Rowe, Erik Griswold, Scott Doig, John Kantor
  • Publication number: 20110264194
    Abstract: An implant centering system includes a sensor connected to a hollow cylindrical anchor via at least two struts. The hollow cylindrical anchor is transformable between a radially compressed configuration for delivery and a radially expanded configuration for lodging against a vessel wall. The struts longitudinally relocate the sensor between a first position in which the sensor is longitudinally spaced apart from the radially compressed anchor, and a second position in which the sensor is at least partially within a lumen of the radially expanded anchor and radially centered within vessel. In one embodiment, the struts are heat-set into a curved configuration and an externally applied force longitudinally relocates the sensor until the struts lock over center into their heat-set configuration. In another embodiment, radial expansion of the anchor longitudinally relocates the sensor without an externally applied force.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 27, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20110264195
    Abstract: Waveforms for forming helical stents with opposing and/or alternating pitch angles along their lengths are disclosed. A wire is bent to form a waveform having a series of sinusoidal segments between a first end and a second end thereof. Each sinusoidal segment is longitudinally offset from its adjacent segment(s). Each waveform includes at least one sinusoidal segment having a first portion in which the amplitude between consecutive turns of the wire gradually increases and a longitudinally offset second portion in which the amplitude between consecutive turns of the wire gradually decreases. The waveform is wrapped from one end to the other about a mandrel to form the stent and depending on the arrangement of sinusoidal segments along the waveform may have opposing and/or alternating pitch angles along a section or an entire length of the stent.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 27, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20110251660
    Abstract: A fixation device for retaining a leadless medical implant to tissue includes an annular collar and an array of self-expanding tines extending from the collar. When deployed, the annular collar encircles the implant and the tines are preset to splay outwardly from the implant to grab body tissue and anchor the implant at a treatment site. The implant and fixation device are contained within a sheath for delivery to the treatment site and a pushing force is applied to a pusher of the delivery system to distally advance the fixation device relative to the implant and deploy the tines. A distal end of the implant having an electrode may form a distal tip of the delivery system, and a potential implantation site may be tested prior to deployment of the fixation device to allow for easy repositioning of the implant if the potential implantation site is determined to be unacceptable.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 13, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20110251662
    Abstract: A fixation device for retaining a leadless medical implant to tissue includes an array of elongate tines having self-expanding distal portions. The fixation tines may be advanced between an implant body and an outer jacket to deploy the tines from a delivery configuration in which the tines are constrained by the outer jacket to an expanded configuration in which the distal end portions of the tines are released from the outer jacket. The implant and fixation device are contained within a sheath for delivery to the treatment site and a pusher within the sheath advances the fixation device relative to the implant body and deploys the tines. A distal end of the implant having an electrode may form a distal tip of the delivery system, and a potential implantation site may be tested prior to deployment of the fixation device to allow for easy repositioning of the implant.
    Type: Application
    Filed: March 14, 2011
    Publication date: October 13, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventors: Erik Griswold, James Calvin Allan, Don Tran
  • Publication number: 20110218615
    Abstract: A stent includes a wave form having a plurality of struts and a plurality of crowns with each crown connecting two adjacent struts. The wave form is wrapped around a longitudinal axis to define a plurality of turns. The stent includes a first connection that connects an end of the wave form to an adjacent crown in a first turn that defines an end of the stent, and a second connection that connects a first crown of the wave form to an adjacent crown in a second turn.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 8, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20110067471
    Abstract: A method for forming a wave form for a stent includes providing a length of a formable material from a supply of the formable material in a feeder along an axis in a first direction in between a first forming member and a second forming member. The second forming member is positioned closer to the feeder than the first forming member. The length is about the length of a substantially straight portion of the wave form. The method also includes moving the first forming member in a second direction substantially perpendicular to the first direction to a position in contact with the formable material, and moving the second forming member in a third direction substantially opposite the second direction to wrap the formable material about a distal end of the first forming member.
    Type: Application
    Filed: January 26, 2010
    Publication date: March 24, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20110071615
    Abstract: A method of manufacturing a stent includes forming a wave form having a plurality of struts and a plurality of crowns. Each crown connects two adjacent struts. The wave form has a center and two portions extending from opposite sides of the center. The method includes wrapping a first portion of the wave form about a longitudinal axis in a first direction at a first pitch angle, starting at the center of the wave form, to define at least one turn oriented at the first pitch angle, and wrapping a second portion of the wave form about the longitudinal axis in a second direction that is opposite the first direction at a second pitch angle, starting at the center of the wave form, to define at least one turn oriented at the second pitch angle. The first pitch angle is opposite the second pitch angle.
    Type: Application
    Filed: January 26, 2010
    Publication date: March 24, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventor: Erik Griswold
  • Publication number: 20110071620
    Abstract: A method of manufacturing a stent includes forming a wave form having a plurality of struts and a plurality of crowns. Each crown connects two adjacent struts. The wave form has a central portion and two end portions located on opposite sides the central portion. Some of the struts located in the end portions have lengths longer and/or shorter than an average length of all of the struts of the wave form. The method includes wrapping the wave form about a longitudinal axis to define a plurality of turns so that an end turn is oriented at an angle relative to the longitudinal axis, a second turn is at a first pitch angle that is less than the angle that the end turn is disposed relative to the longitudinal axis, a third turn is at a second pitch angle that is less than the first pitch angle, and a fourth turn is at a third pitch angle that is less than the second pitch angle.
    Type: Application
    Filed: January 26, 2010
    Publication date: March 24, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventors: Richard Bliss, Justin Goshgarian, Rui Lam, Padraig Savage, Erik Griswold, Gianfranco Pellegrini, Matthew Baldwin, Lance Ensign
  • Publication number: 20110071617
    Abstract: A stent includes a continuous wave form wrapped around a longitudinal axis of the stent at a pitch to define a helix comprising a plurality of turns. The wave form includes a plurality of struts and a plurality of crowns. Each crown connects adjacent struts within a turn to define the continuous wave form. The stent also includes a plurality of connections configured to connect selected crowns of adjacent turns. Unconnected crowns of adjacent turns that substantially face each other are spaced from each other and define a gap therebetween. The gap between the unconnected crowns of adjacent turns is variable around a circumference of the stent.
    Type: Application
    Filed: January 26, 2010
    Publication date: March 24, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventors: Matthew Baldwin, Richard Bliss, Justin Goshgarian, Erik Griswold, Rui Lam