Patents by Inventor Erik H. Binnie

Erik H. Binnie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150168288
    Abstract: A method and apparatus for detecting pathogens and particles in a fluid in which particle size and intrinsic fluorescence of a simple particle is determined, comprising a sample cell; a light source on one side of the sample cell for sending a focused beam of light through the sample, whereby portions of the beam of light are scattered at various angles by particles of various sizes present in the sample area; a particle size detector positioned in the light path for detecting a portion of forward scattered light; a pair of fluorescence detectors positioned off axis from the beam of light; and a pair of elliptical mirrors positioned such that an intersection of the incoming particle stream and the light beam are at one foci of each ellipsoid, and one of said pair of fluorescence detectors lies at the other foci.
    Type: Application
    Filed: January 28, 2015
    Publication date: June 18, 2015
    Applicant: Azbil Corporation
    Inventors: Erik H. BINNIE, Gregory Scott Morris
  • Publication number: 20110036995
    Abstract: A method and apparatus for detecting pathogens and particles in a fluid in which particle size and intrinsic fluorescence of a simple particle is determined, comprising a sample cell; a light source on one side of the sample cell for sending a focused beam of light through the sample, whereby portions of the beam of light are scattered at various angles by particles of various sizes present in the sample area; a particle size detector positioned in the light path for detecting a portion of forward scattered light; a pair of fluorescence detectors positioned off axis from the beam of light; and a pair of elliptical mirrors positioned such that an intersection of the incoming particle stream and the light beam are at one foci of each ellipsoid, and one of said pair of fluorescence detectors lies at the other foci.
    Type: Application
    Filed: December 15, 2008
    Publication date: February 17, 2011
    Applicant: BIOVIGILANT SYSTEMS, INC.
    Inventors: Erik H. Binnie, GRegory Scott Morris
  • Patent number: 6851653
    Abstract: A system for supporting loads includes a track having uniformly spaced apertures separated by necks. A bracket is mounted on the track and has two groups of studs which are positioned in the necks and prevent the bracket from pulling away from the track. Neighboring studs in both groups have identical center-to-center spacings. Two plugs pass through holes in the bracket and into respective ones of the apertures. The plugs fix the bracket against movement relative to the track longitudinally and transversely of the latter. The distance between a plug hole and any stud equals one-half the center-to-center spacing of neighboring studs of a group or an integral multiple of one-half such spacing. A locking member passes through an additional hole in the bracket and frictionally engages the track to prevent the plugs from pulling out of the respective apertures during an impact.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: February 8, 2005
    Assignee: AGM Container Controls, Inc.
    Inventors: Robert O. Crowley, Patrick M. Lane, Erik H. Binnie
  • Publication number: 20040178309
    Abstract: A system for supporting loads includes a track having uniformly spaced apertures separated by necks. A bracket is mounted on the track and has two groups of studs which are positioned in the necks and prevent the bracket from pulling away from the track. Neighboring studs in both groups have identical center-to-center spacings. Two plugs pass through holes in the bracket and into respective ones of the apertures. The plugs fix the bracket against movement relative to the track longitudinally and transversely of the latter. The distance between a plug hole and any stud equals one-half the center-to-center spacing of neighboring studs of a group or an integral multiple of one-half such spacing. A locking member passes through an additional hole in the bracket and frictionally engages the track to prevent the plugs from pulling out of the respective apertures during an impact.
    Type: Application
    Filed: March 13, 2003
    Publication date: September 16, 2004
    Inventors: Robert O. Crowley, Patrick M. Lane, Erik H. Binnie