Patents by Inventor Erik Öjefors

Erik Öjefors has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220263223
    Abstract: An integrated circuit package is provided. The integrated circuit package comprises a transceiver radio-frequency integrated circuit, RFIC, and at least one antenna array formed in a redistribution metal layer of the integrated circuit package, and is arranged in a fan-out area of the RFIC. The at least one antenna array comprises at least one crossed dipole antenna (10). Each crossed dipole antenna comprises a first dipole comprising two first legs (11), and a second dipole comprising two second legs (12), and two leg pairs (10a, 10b), each leg pair comprising one first leg of the first dipole and one second leg of the second dipole, and two feed lines (20a, 20b). Each feed line is coupled to a respective leg pair at a center (15) of the crossed dipole antenna. At least a part of each feed line is arranged between the two leg pairs.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 18, 2022
    Applicant: Sivers Wireless AB
    Inventors: Erik ÖJEFORS, Dragos DANCILA, Imran AZIZ, Johanna HANNING
  • Publication number: 20220216166
    Abstract: An arrangement (100) is provided. The arrangement comprises an integrated circuit package (2). The integrated circuit package comprises a first side (2a) which comprises interconnect elements, and a second side (2b) which is opposite to the first side (2a). The integrated circuit package further comprises at least one antenna element (25), and a heatsink element (1) arranged on the second side (2b) of the integrated circuit package (2). The heat sink element comprises at least one passage (10). The at least one passage (10) extends through the heatsink element (1). A first opening (13) of the at least one passage (10) is arranged at a respective antenna element (25) of the at least one antenna element. The at least one passage (10) is configured to increase the gain of the respective antenna element (25).
    Type: Application
    Filed: January 7, 2022
    Publication date: July 7, 2022
    Applicant: Sivers Wireless AB
    Inventors: Erik ÖJEFORS, Dragos DANCILA, Imran AZIZ, Johanna HANNING
  • Patent number: 8547158
    Abstract: The invention relates to devices comprising field effect transistors to detect the power of an electromagnetic high frequency signal VRF. According to the prior art, the high frequency signal is coupled into the gate G and via a capacitor CGD into the drain D of the field effect transistor FET, the gate G being biased with a direct voltage Vg which corresponds to the threshold value of the FET transistor. The resulting current at the source S contains a direct current portion Ids which is proportional to the square of the amplitude of the high frequency signal. The operating frequency of said power detectors is limited to a few gigahertz (GHz) by the discrete arrangement and especially by the predetermined gate length of the field effect transistor. The aim of the invention is to improve a resistive mixer in such a manner that it can be operated at high gigahertz and terahertz frequencies.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: October 1, 2013
    Assignee: Johann Wolfgang Goeth-Universität Frankfurt a.M.
    Inventors: Ullrich Pfeiffer, Erik Oejefors, Hartmut G. Roskos, Alvydas Lisauskas
  • Patent number: 8330111
    Abstract: The present invention relates to a device for detecting millimeter waves, having at least one field effect transistor with a source, a drain, a gate, a gate-source contact, a source-drain channel, and a gate-drain contact. Compared to a similar such device, the problem addressed by the present invention, among others, is that of providing a device which enables the provision of a field effect transistor for detecting the power and/or phase of electromagnetic radiation in the Thz frequency range. In order to create such a device, it is suggested according to the invention, that a device be provided which has an antenna structure wherein the field effect transistor is connected to the antenna structure in such a manner that an electromagnetic signal received by the antenna structure in the THz range is fed into the field effect transistor via the gate-source contact, and wherein the field effect transistor and the antenna structure are arranged together on a single substrate.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 11, 2012
    Assignee: Johann Wolfgang Goethe-Universitat Frankfurt A.M.
    Inventors: Erik Öjefors, Peter Haring Bolivar, Hartmut G. Roskos, Ullrich Pfeiffer
  • Publication number: 20110254610
    Abstract: The invention relates to devices comprising field effect transistors to detect the power of an electromagnetic high frequency signal VRF. According to the prior art, the high frequency signal is coupled into the gate G and via a capacitor CGD into the drain D of the field effect transistor FET, the gate G being biased with a direct voltage Vg which corresponds to the threshold value of the FET transistor. The resulting current at the source S contains a direct current portion Ids which is proportional to the square of the amplitude of the high frequency signal. The operating frequency of said power detectors is limited to a few gigahertz (GHz) by the discrete arrangement and especially by the predetermined gate length of the field effect transistor. The aim of the invention is to improve a resistive mixer in such a manner that it can be operated at high gigahertz and terahertz frequencies.
    Type: Application
    Filed: August 28, 2009
    Publication date: October 20, 2011
    Applicants: BERGISCHE UNIVERSIT??T WUPPERTAL, JOHANN WOLFGANG GOETHE-UNIVERSITAT FRANKFURT A.M.
    Inventors: Ullrich Pfeiffer, Erik Oejefors, Hartmut G. Roskos, Alvydas Lisauskas
  • Publication number: 20110001173
    Abstract: The present invention relates to a device for detecting millimeter waves, having at least one field effect transistor with a source, a drain, a gate, a gate-source contact, a source-drain channel, and a gate-drain contact. Compared to a similar such device, the problem addressed by the present invention, among others, is that of providing a device which enables the provision of a field effect transistor for detecting the power and/or phase of electromagnetic radiation in the Thz frequency range. In order to create such a device, it is suggested according to the invention, that a device be provided which has an antenna structure wherein the field effect transistor is connected to the antenna structure in such a manner that an electromagnetic signal received by the antenna structure in the THz range is fed into the field effect transistor via the gate-source contact, and wherein the field effect transistor and the antenna structure are arranged together on a single substrate.
    Type: Application
    Filed: December 12, 2008
    Publication date: January 6, 2011
    Applicant: JOHANN WOLFGANG GOETHE-UNIVERSITAT FRANKFURT A.M.
    Inventors: Erik Öjefors, Peter Haring Bolivar, Hartmut G. Roskos, Ullrich Pfeiffer
  • Publication number: 20090213026
    Abstract: The present invention related to an antenna arrangement comprising at least a first antenna element and a ground plane means, wherein the antenna arrangement is provided at a first end of the ground plane means. The invention is characterised in that a wave trap is provided at a second end of the ground plane means, and the second end is located opposite to the first end.
    Type: Application
    Filed: October 5, 2006
    Publication date: August 27, 2009
    Inventors: Peter Lindberg, Erik Öjefors