Patents by Inventor Erik Jon Bjornard

Erik Jon Bjornard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11796882
    Abstract: An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: October 24, 2023
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Zachary Richard Patterson, Erik Jon Bjornard, Avanti M. Jain, Jean-Christophe Giron, Neil L. Sbar
  • Patent number: 11567384
    Abstract: A non-light-emitting, variable transmission device can include a first substrate, a first transparent conductive layer, an electrochromic layer, a second transparent conductive layer, a second substrate; and an interlayer disposed between the first substrate and the second substrate. The non-light-emitting, variable transmission device is configured such that a failure of the non-light-emitting, variable transmission device is less likely than another non-light-emitting, variable transmission device in which the interlayer directly contacts the second transparent conductive layer and has a moisture content of at least 0.08 wt %. In an embodiment, the interlayer has a moisture content of at most 0.05 wt %.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: January 31, 2023
    Assignee: SAGE ELECTROCHROMICS, INC.
    Inventors: Wen Li, Florent Martin, Jean-Christophe Giron, Robert Newcomb, Erik Jon Bjornard
  • Publication number: 20220128880
    Abstract: An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 28, 2022
    Applicant: SAGE Electrochromics, Inc.
    Inventors: Zachary Richard Patterson, Erik Jon Bjornard, Avanti M. Jain, Jean-Christophe Giron, Neil L. Sbar
  • Patent number: 11221535
    Abstract: An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: January 11, 2022
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Zachary Richard Patterson, Erik Jon Bjornard, Avanti M. Jain, Jean-Christophe Giron, Neil L. Sbar
  • Patent number: 10890821
    Abstract: An electrochromic device is structured to selectively switch separate regions to separate transmission levels, based at least in part upon different respective sheet resistances of separate conductive layer regions. Sheet resistance of a conductive layer region can be associated with a transmission level to which a corresponding EC stack region can be switched, and a conductive layer with separate regions having separate sheet resistances causes corresponding EC stack regions to switch to different transmission levels. Sheet resistance in a conductive layer region can be adjusted via various processes, including introducing various chemical species into the conductive layer region to adjust a chemical species distribution in the region, where the chemical species distribution is associated with the sheet resistance of the region, heating conductive layer regions to induce oxidation of the region, adjusting the thickness of a conductive layer region, etc.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: January 12, 2021
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Erik Jon Bjornard, David E. Woolley
  • Patent number: 10509291
    Abstract: A stack of layers can be formed adjacent to a substrate before any layer within the stack is patterned. In an embodiment, combinations of substrates and stacks can be made and stored for an extended period, such as more than a week or a month, or shipped to a remote location before further manufacturing occurs. By delaying irreversible patterning until the closer to the date final product will be shipped to a customer, the likelihood of having too much inventory of a particular size or having to scrap windows for a custom order that was cancelled after manufacturing started can be substantially reduced. Further, particles between layers of the stack can be avoided. The process flows described are flexible, and many of the patterning operations in forming holes, openings, or the high resistance region can be performed in many different orders.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 17, 2019
    Assignee: SAGE ELECTROCHROMICS, INC.
    Inventors: Sebastian Marius Sarrach, Florent Martin, Erik Jon Bjornard
  • Publication number: 20190155120
    Abstract: A non-light-emitting, variable transmission device can include a first substrate, a first transparent conductive layer, an electrochromic layer, a second transparent conductive layer, a second substrate; and an interlayer disposed between the first substrate and the second substrate. The non-light-emitting, variable transmission device is configured such that a failure of the non-light-emitting, variable transmission device is less likely than another non-light-emitting, variable transmission device in which the interlayer directly contacts the second transparent conductive layer and has a moisture content of at least 0.08 wt %. In an embodiment, the interlayer has a moisture content of at most 0.05 wt %.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 23, 2019
    Inventors: Wen Li, Florent Martin, Jean-Christophe Giron, Robert Newcomb, Erik Jon Bjornard
  • Publication number: 20180299742
    Abstract: An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
    Type: Application
    Filed: April 9, 2018
    Publication date: October 18, 2018
    Applicant: SAGE Electrochromics, Inc.
    Inventors: Zachary Richard Patterson, Erik Jon Bjornard, Avanti M. Jain, Jean-Christophe Giron, Neil L. Sbar
  • Publication number: 20180252976
    Abstract: A stack of layers can be formed adjacent to a substrate before any layer within the stack is patterned. In an embodiment, combinations of substrates and stacks can be made and stored for an extended period, such as more than a week or a month, or shipped to a remote location before further manufacturing occurs. By delaying irreversible patterning until the closer to the date final product will be shipped to a customer, the likelihood of having too much inventory of a particular size or having to scrap windows for a custom order that was cancelled after manufacturing started can be substantially reduced. Further, particles between layers of the stack can be avoided. The process flows described are flexible, and many of the patterning operations in forming holes, openings, or the high resistance region can be performed in many different orders.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 6, 2018
    Inventors: Sebastian Marius Sarrach, Florent Martin, Erik Jon Bjornard
  • Publication number: 20180224707
    Abstract: An electrochromic device is structured to selectively switch separate regions to separate transmission levels, based at least in part upon different respective sheet resistances of separate conductive layer regions. Sheet resistance of a conductive layer region can be associated with a transmission level to which a corresponding EC stack region can be switched, and a conductive layer with separate regions having separate sheet resistances causes corresponding EC stack regions to switch to different transmission levels. Sheet resistance in a conductive layer region can be adjusted via various processes, including introducing various chemical species into the conductive layer region to adjust a chemical species distribution in the region, where the chemical species distribution is associated with the sheet resistance of the region, heating conductive layer regions to induce oxidation of the region, adjusting the thickness of a conductive layer region, etc.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Applicant: SAGE Electrochromics, Inc.
    Inventors: Erik Jon Bjornard, David E. Woolley
  • Patent number: 9939705
    Abstract: An electrochromic device is structured to selectively switch separate regions to separate transmission levels, based at least in part upon different respective sheet resistances of separate conductive layer regions. Sheet resistance of a conductive layer region can be associated with a transmission level to which a corresponding EC stack region can be switched, and a conductive layer with separate regions having separate sheet resistances causes corresponding EC stack regions to switch to different transmission levels. Sheet resistance in a conductive layer region can be adjusted via various processes, including introducing various chemical species into the conductive layer region to adjust a chemical species distribution in the region, where the chemical species distribution is associated with the sheet resistance of the region, heating conductive layer regions to induce oxidation of the region, adjusting the thickness of a conductive layer region, etc.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: April 10, 2018
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Erik Jon Bjornard, David E. Woolley
  • Patent number: 9939704
    Abstract: An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: April 10, 2018
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Zachary Richard Patterson, Erik Jon Bjornard, Avanti M. Jain, Jean-Christophe Giron, Neil L. Sbar
  • Patent number: 9939702
    Abstract: An electrochromic device is structured to selectively switch separate regions to separate transmission levels, based at least in part upon different transport rates of different charged electrolyte species in the separate regions. Charged electrolyte species can be introduced in various regions of one or more electrochromic stack layers, including a counter-electrode layer, ion-conducting layer, and electrochromic layer. The charged electrolyte species can have different transport rates, so that a distribution of one species introduced in some regions move between layers and different rates relative another distribution of another species introduced in some regions. A species can be introduced, in one or more regions, in one or more particular distributions associated with a particular transmission pattern to structure the electrochromic device to selectively switch to the particular transmission pattern. Species can be introduced via various processes, including ion implantation, chemical diffusion, etc.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: April 10, 2018
    Assignee: SAGE Electrochromics, Inc.
    Inventor: Erik Jon Bjornard
  • Patent number: 9625783
    Abstract: An electrochromic device is structured to selectively heat one or more particular regions of a conductive layer of the electrochromic device. An electrical potential difference can be induced across the conductive layer to heat one or more layer regions. The conductive layer can be one of at least two conductive layers on opposite sides of an electrochromic film stack, and an electrical potential difference can be induced between the conductive layers to cause at least some of the electrochromic film stack to change transmission levels. The conductive layer can include regions with different sheet resistances, so that one or more regions are structured to generate more heat than other regions of the conductive layer when an electrical potential difference is induced across the conductive layer. Separate layer regions can include separate chemical species. The conductive layer can be geometrically structured so that some layer regions have a greater sheet resistance than other regions.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 18, 2017
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Erik Jon Bjornard, Bryan D. Greer
  • Publication number: 20160033837
    Abstract: An electrochromic device is structured to selectively heat one or more particular regions of a conductive layer of the electrochromic device. An electrical potential difference can be induced across the conductive layer to heat one or more layer regions. The conductive layer can be one of at least two conductive layers on opposite sides of an electrochromic film stack, and an electrical potential difference can be induced between the conductive layers to cause at least some of the electrochromic film stack to change transmission levels. The conductive layer can include regions with different sheet resistances, so that one or more regions are structured to generate more heat than other regions of the conductive layer when an electrical potential difference is induced across the conductive layer. Separate layer regions can include separate chemical species. The conductive layer can be geometrically structured so that some layer regions have a greater sheet resistance than other regions.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 4, 2016
    Applicant: SAGE Electrochromics, Inc.
    Inventors: Erik Jon Bjornard, Bryan D. Greer
  • Publication number: 20150362815
    Abstract: An electrochromic device is structured to selectively switch separate regions to separate transmission levels, based at least in part upon different transport rates of different charged electrolyte species in the separate regions. Charged electrolyte species can be introduced in various regions of one or more electrochromic stack layers, including a counter-electrode layer, ion-conducting layer, and electrochromic layer. The charged electrolyte species can have different transport rates, so that a distribution of one species introduced in some regions move between layers and different rates relative another distribution of another species introduced in some regions. A species can be introduced, in one or more regions, in one or more particular distributions associated with a particular transmission pattern to structure the electrochromic device to selectively switch to the particular transmission pattern. Species can be introduced via various processes, including ion implantation, chemical diffusion, etc.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Applicant: SAGE ELECTROCHROMICS, INC.
    Inventor: Erik Jon Bjornard
  • Publication number: 20150362819
    Abstract: An electrochromic device is structured to selectively switch separate regions to separate transmission levels, based at least in part upon different respective sheet resistances of separate conductive layer regions. Sheet resistance of a conductive layer region can be associated with a transmission level to which a corresponding EC stack region can be switched, and a conductive layer with separate regions having separate sheet resistances causes corresponding EC stack regions to switch to different transmission levels. Sheet resistance in a conductive layer region can be adjusted via various processes, including introducing various chemical species into the conductive layer region to adjust a chemical species distribution in the region, where the chemical species distribution is associated with the sheet resistance of the region, heating conductive layer regions to induce oxidation of the region, adjusting the thickness of a conductive layer region, etc.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Applicant: SAGE ELECTROCHROMICS, INC.
    Inventors: Erik Jon Bjornard, David E. Woolley
  • Publication number: 20150362817
    Abstract: An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Applicant: SAGE ELECTROCHROMICS, INC.
    Inventors: Zachary Richard Patterson, Erik Jon Bjornard, Avanti M. Jain, Jean-Christophe Giron, Neil L. Sbar