Patents by Inventor Erik M. Thompson

Erik M. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210255258
    Abstract: Microwave resonator readout of the cavity-spin interaction between a spin defect center ensemble and a microwave resonator yields fidelities that are orders of magnitude higher than is possible with optical readouts. In microwave resonator readout, microwave photons probe a microwave resonator coupled to a spin defect center ensemble subjected to a physical parameter to be measured. The physical parameter shifts the spin defect centers' resonances, which in turn change the dispersion and/or absorption of the microwave resonator. The microwave photons probe these dispersion and/or absorption changes, yielding a measurement with higher visibility, lower shot noise, better sensitivity, and higher signal-to-noise ratio than a comparable fluorescence measurement. In addition, microwave resonator readout enables coherent averaging of spin defect center ensembles and is compatible with spin systems other than nitrogen vacancies in diamond.
    Type: Application
    Filed: March 1, 2021
    Publication date: August 19, 2021
    Inventors: John F. Barry, Erik R. Eisenach, Michael F. O'Keeffe, Jonah A. Majumder, Linh M. Pham, Isaac Chuang, Erik M. Thompson, Christopher Louis Panuski, Xingyu Zhang, Danielle A. Braje
  • Patent number: 11041916
    Abstract: Applying a bias magnetic field to a solid-state spin sensor enables vector magnetic field measurements with the solid-state spin sensor. Unfortunately, if the bias magnetic field drifts slowly, it creates noise that confounds low-frequency field measurements. Fortunately, the undesired slow drift of the magnitude of the bias magnetic field can be removed, nullified, or cancelled by reversing the direction (polarity) of the bias magnetic field at known intervals. This makes the resulting solid-state spin sensor system suitable for detecting low-frequency (mHz, for example) changes in magnetic field or other physical parameters.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 22, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Linh M. Pham, Erik M. Thompson, John F. Barry, Kerry A. Johnson, Danielle A. Braje
  • Patent number: 10983245
    Abstract: A system may comprise a scanner assembly and a radiometer. The radiometer may comprise a W-Band and F-Band receiver and an intermediate frequency processor. The system may be rotatably mounted to a bus via the scanner assembly.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: April 20, 2021
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: William Joseph Blackwell, Michael DiLiberto, James V. Eshbaugh, Christopher J. Galbraith, Steven Gillmer, Robert Leslie, Idahosa A. Osaretin, Joseph Racamato, Erik M. Thompson
  • Patent number: 10962611
    Abstract: Microwave resonator readout of the cavity-spin interaction between a spin defect center ensemble and a microwave resonator yields fidelities that are orders of magnitude higher than is possible with optical readouts. In microwave resonator readout, microwave photons probe a microwave resonator coupled to a spin defect center ensemble subjected to a physical parameter to be measured. The physical parameter shifts the spin defect centers' resonances, which in turn change the dispersion and/or absorption of the microwave resonator. The microwave photons probe these dispersion and/or absorption changes, yielding a measurement with higher visibility, lower shot noise, better sensitivity, and higher signal-to-noise ratio than a comparable fluorescence measurement. In addition, microwave resonator readout enables coherent averaging of spin defect center ensembles and is compatible with spin systems other than nitrogen vacancies in diamond.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: March 30, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: John F. Barry, Erik R. Eisenach, Michael F. O'Keeffe, Jonah A. Majumder, Linh M. Pham, Isaac Chuang, Erik M. Thompson, Christopher Louis Panuski, Xingyu Zhang, Danielle A. Braje
  • Publication number: 20200064419
    Abstract: Microwave resonator readout of the cavity-spin interaction between a spin defect center ensemble and a microwave resonator yields fidelities that are orders of magnitude higher than is possible with optical readouts. In microwave resonator readout, microwave photons probe a microwave resonator coupled to a spin defect center ensemble subjected to a physical parameter to be measured. The physical parameter shifts the spin defect centers' resonances, which in turn change the dispersion and/or absorption of the microwave resonator. The microwave photons probe these dispersion and/or absorption changes, yielding a measurement with higher visibility, lower shot noise, better sensitivity, and higher signal-to-noise ratio than a comparable fluorescence measurement. In addition, microwave resonator readout enables coherent averaging of spin defect center ensembles and is compatible with spin systems other than nitrogen vacancies in diamond.
    Type: Application
    Filed: August 27, 2019
    Publication date: February 27, 2020
    Inventors: John F. Barry, Erik R. Eisenach, Michael F. O'Keeffe, Jonah A. Majumder, Linh M. Pham, Isaac Chuang, Erik M. Thompson, Christopher Louis Panuski, Xingyu Zhang, Danielle A. Braje
  • Publication number: 20200025835
    Abstract: Applying a bias magnetic field to a solid-state spin sensor enables vector magnetic field measurements with the solid-state spin sensor. Unfortunately, if the bias magnetic field drifts slowly, it creates noise that confounds low-frequency field measurements. Fortunately, the undesired slow drift of the magnitude of the bias magnetic field can be removed, nullified, or cancelled by reversing the direction (polarity) of the bias magnetic field at known intervals. This makes the resulting solid-state spin sensor system suitable for detecting low-frequency (mHz, for example) changes in magnetic field or other physical parameters.
    Type: Application
    Filed: August 21, 2018
    Publication date: January 23, 2020
    Inventors: Linh M. Pham, Erik M. Thompson, John F. Barry, Kerry A. Johnson, Danielle A. Braje