Patents by Inventor Erik M. Ullian

Erik M. Ullian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150710
    Abstract: Compositions and methods are provided for generation of assembled three-dimensional organoids with defined numbers and ratios of mature neurons and mature glia. Organoids can be assembled from mature neurons and mature glia derived from induced pluripotent stem cells having at least one genetic mutation associated with a neurological disorder, a neurodevelopmental disorder, or a neurodegenerative disease. Such organoids can be used in disease modeling and drug screening. In particular, assembled three-dimensional organoids are provided that model granulin (GRN) loss of function in neurons and astrocytes, which display many of the pathological features of neuronal ceroid lipofusis and frontotemporal dementia.
    Type: Application
    Filed: February 25, 2022
    Publication date: May 9, 2024
    Inventors: Erik M. Ullian, Mark Koontz, Robert Krencik
  • Publication number: 20110112034
    Abstract: Soluble proteins, e.g. thrombospondins, can trigger synapse formation. Such proteins are synthesized in vitro and in vivo by astrocytes, which therefore have a role in synaptogenesis. These thrombospondins are only expressed in the normal brain exactly during the period of developmental synaptogenesis, being off in embryonic brain and adult brain but on at high levels in postnatal brain. Methods are provided for protecting or treating an individual suffering from adverse effects of deficits in synaptogenesis, or from undesirably active synaptogenesis. These findings have broad implications for a variety of clinical conditions, including traumatic brain injury, epilepsy, and other conditions where synapses fail to form or form inappropriately. Synaptogenesis is enhanced by contacting neurons with agents that are specific agonists or antagonists of thrombospondins. Conversely, synaptogenesis is inhibited by contacting neurons with inhibitors or antagonists of thrombospondins.
    Type: Application
    Filed: October 21, 2010
    Publication date: May 12, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ben A. Barres, Karen Sue Christopherson, Erik M. Ullian
  • Publication number: 20100087375
    Abstract: Soluble proteins, e.g. thrombospondins, can trigger synapse formation. Such proteins are synthesized in vitro and in vivo by astrocytes, which therefore have a role in synaptogenesis. These thrombospondins are only expressed in the normal brain exactly during the period of developmental synaptogenesis, being off in embryonic brain and adult brain but on at high levels in postnatal brain. Methods are provided for protecting or treating an individual suffering from adverse effects of deficits in synaptogenesis, or from undesirably active synaptogenesis. These findings have broad implications for a variety of clinical conditions, including traumatic brain injury, epilepsy, and other conditions where synapses fail to form or form inappropriately. Synaptogenesis is enhanced by contacting neurons with agents that are specific agonists or antagonists of thrombospondins. Conversely, synaptogenesis is inhibited by contacting neurons with inhibitors or antagonists of thrombospondins.
    Type: Application
    Filed: September 16, 2009
    Publication date: April 8, 2010
    Applicant: The Board of Trustees of the Leland Stanford
    Inventors: Ben A. Barres, Karen Sue Christopherson, Erik M. Ullian
  • Publication number: 20090062183
    Abstract: Soluble proteins, e.g. thrombospondins, can trigger synapse formation. Such proteins are synthesized in vitro and in vivo by astrocytes, which therefore have a role in synaptogenesis. These thrombospondins are only expressed in the normal brain exactly during the period of developmental synaptogenesis, being off in embryonic brain and adult brain but on at high levels in postnatal brain. Methods are provided for protecting or treating an individual suffering from adverse effects of deficits in synaptogenesis, or from undesirably active synaptogenesis. These findings have broad implications for a variety of clinical conditions, including traumatic brain injury, epilepsy, and other conditions where synapses fail to form or form inappropriately. Synaptogenesis is enhanced by contacting neurons with agents that are specific agonists or antagonists of thrombospondins. Conversely, synaptogenesis is inhibited by contacting neurons with inhibitors or antagonists of thrombospondins.
    Type: Application
    Filed: November 5, 2008
    Publication date: March 5, 2009
    Inventors: Ben A. Barres, Karen Sue Christopherson, Erik M. Ullian