Patents by Inventor Erik Michiel Franken

Erik Michiel Franken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11799486
    Abstract: Methods and systems for quantum computing based sample analysis include computing cross-correlations of two images using a quantum processing system, and computing less noisy image based of two or more images using a quantum processing system. Specifically, the disclosure includes methods and systems for utilizing a quantum computing system to compute and store cross correlation values for two sets of data, which was previously believed to be physically impossible. Additionally, the disclosure also includes methods and systems for utilizing a quantum computing system to generate less noisy data sets using a quantum expectation maximization maximum likelihood (EMML). Specifically, the disclosed systems and methods allow for the generation of less noisy data sets by utilizing the special traits of quantum computers, the systems and methods disclosed herein represent a drastic improvement in efficiency over current systems and methods that rely on traditional computing systems.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: October 24, 2023
    Assignee: FEI Company
    Inventors: Valentina Caprara Vivoli, Yuchen Deng, Erik Michiel Franken
  • Patent number: 11742175
    Abstract: Disclosed herein are methods, apparatuses, systems, and computer-readable media related to defective pixel management in charged particle microscopy. For example, in some embodiments, a charged particle microscope support apparatus may include: first logic to identify a defective pixel region of a charged particle camera, wherein the charged particle camera cannot detect charged particle events in the defective pixel region; second logic to generate a first charged particle event indicator that identifies a first time and a first location of a first charged particle event outside the defective pixel region, wherein the first charged particle event is detected by the charged particle camera; third logic to generate a second charged particle event indicator that identifies a second time and a second location in the defective pixel region; and fourth logic to output data representative of the charged particle event indicators.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: August 29, 2023
    Assignee: FEI Company
    Inventors: Erik Michiel Franken, Bart Jozef Janssen
  • Publication number: 20230170910
    Abstract: Methods and systems for quantum computing based sample analysis include computing cross-correlations of two images using a quantum processing system, and computing less noisy image based of two or more images using a quantum processing system. Specifically, the disclosure includes methods and systems for utilizing a quantum computing system to compute and store cross correlation values for two sets of data, which was previously believed to be physically impossible. Additionally, the disclosure also includes methods and systems for utilizing a quantum computing system to generate less noisy data sets using a quantum expectation maximization maximum likelihood (EMML). Specifically, the disclosed systems and methods allow for the generation of less noisy data sets by utilizing the special traits of quantum computers, the systems and methods disclosed herein represent a drastic improvement in efficiency over current systems and methods that rely on traditional computing systems.
    Type: Application
    Filed: October 13, 2022
    Publication date: June 1, 2023
    Applicant: FEI Company
    Inventors: Valentina Caprara Vivoli, Yuchen Deng, Erik Michiel Franken
  • Publication number: 20230005702
    Abstract: Disclosed herein are methods, apparatuses, systems, and computer-readable media related to defective pixel management in charged particle microscopy. For example, in some embodiments, a charged particle microscope support apparatus may include: first logic to identify a defective pixel region of a charged particle camera, wherein the charged particle camera cannot detect charged particle events in the defective pixel region; second logic to generate a first charged particle event indicator that identifies a first time and a first location of a first charged particle event outside the defective pixel region, wherein the first charged particle event is detected by the charged particle camera; third logic to generate a second charged particle event indicator that identifies a second time and a second location in the defective pixel region; and fourth logic to output data representative of the charged particle event indicators.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 5, 2023
    Applicant: FEI Company
    Inventors: Erik Michiel FRANKEN, Bart Jozef JANSSEN
  • Patent number: 11501197
    Abstract: Methods and systems for quantum computing based sample analysis include computing cross-correlations of two images using a quantum processing system, and computing less noisy image based of two or more images using a quantum processing system. Specifically, the disclosure includes methods and systems for utilizing a quantum computing system to compute and store cross correlation values for two sets of data, which was previously believed to be physically impossible. Additionally, the disclosure also includes methods and systems for utilizing a quantum computing system to generate less noisy data sets using a quantum expectation maximization maximum likelihood (EMML). Specifically, the disclosed systems and methods allow for the generation of less noisy data sets by utilizing the special traits of quantum computers, the systems and methods disclosed herein represent a drastic improvement in efficiency over current systems and methods that rely on traditional computing systems.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: November 15, 2022
    Assignee: FEI Company
    Inventors: Valentina Caprara Vivoli, Yuchen Deng, Erik Michiel Franken
  • Patent number: 10937625
    Abstract: The invention relates to a method of imaging a sample, said sample mounted on a sample holder in an electron microscope, the electron microscope comprising an electron source for generating a beam of energetic electrons along an optical axis and optical elements for focusing and deflecting the beam so as to irradiate the sample with a beam of electrons. The sample holder is capable of positioning and tilting the sample with respect to the electron beam. The method comprises the step of acquiring a tilt series of images by irradiating the sample with the beam of electrons, and concurrently changing a position of the sample during acquisition of the images, so that each image is acquired at an associated unique tilt angle and an associated unique position.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 2, 2021
    Assignee: FEI Company
    Inventors: Erik Michiel Franken, Remco Schoenmakers, Bart Jozef Janssen, Martin Verheijen, Holger Kohr, Yuchen Deng, Andreas Voigt
  • Publication number: 20210049493
    Abstract: Methods and systems for quantum computing based sample analysis include computing cross-correlations of two images using a quantum processing system, and computing less noisy image based of two or more images using a quantum processing system. Specifically, the disclosure includes methods and systems for utilizing a quantum computing system to compute and store cross correlation values for two sets of data, which was previously believed to be physically impossible. Additionally, the disclosure also includes methods and systems for utilizing a quantum computing system to generate less noisy data sets using a quantum expectation maximization maximum likelihood (EMML). Specifically, the disclosed systems and methods allow for the generation of less noisy data sets by utilizing the special traits of quantum computers, the systems and methods disclosed herein represent a drastic improvement in efficiency over current systems and methods that rely on traditional computing systems.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 18, 2021
    Applicant: FEI Company
    Inventors: Valentina Caprara Vivoli, Yuchen Deng, Erik Michiel Franken
  • Patent number: 10825647
    Abstract: A method of using a Transmission Charged Particle Microscope, comprising: Providing a specimen on a specimen holder; Using an illumination system to direct a beam of charged particles from a source onto said specimen; Using an imaging system to direct charged particles that are transmitted through the specimen onto a detector, further comprising the following actions: In an acquisition step, lasting a time interval T, using said detector in particle counting mode to register spatiotemporal data relating to individual particle detection incidences, and to output said spatiotemporal data in raw form, without assembly into an image frame; In a subsequent rendering step, assembling a final image from said spatiotemporal data, while performing a mathematical correction operation.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 3, 2020
    Assignee: FEI Company
    Inventors: Bart Jozef Janssen, Lingbo Yu, Erik Michiel Franken
  • Publication number: 20200168433
    Abstract: The invention relates to a method of imaging a sample, said sample mounted on a sample holder in an electron microscope, the electron microscope comprising an electron source for generating a beam of energetic electrons along an optical axis and optical elements for focusing and deflecting the beam so as to irradiate the sample with a beam of electrons. The sample holder is capable of positioning and tilting the sample with respect to the electron beam. The method comprises the step of acquiring a tilt series of images by irradiating the sample with the beam of electrons, and concurrently changing a position of the sample during acquisition of the images, so that each image is acquired at an associated unique tilt angle and an associated unique position.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 28, 2020
    Applicant: FEI Company
    Inventors: Erik Michiel Franken, Remco Schoenmakers, Bart Jozef Janssen, Martin Verheijen, Holger Kohr, Yuchen Deng, Andreas Voigt
  • Patent number: 10665419
    Abstract: A method of imaging a specimen in a Scanning Transmission Charged Particle Microscope, comprising the following steps: Providing the specimen on a specimen holder; Providing a beam of charged particles that is directed from a source through an illuminator so as to irradiate the specimen; Providing a segmented detector for detecting a flux of charged particles traversing the specimen; Causing said beam to scan across a surface of the specimen, and combining signals from different segments of the detector so as to produce a vector output from the detector at each scan position, said vector output having components Dx, Dy along respective X, Y coordinate axes, specifically comprising: Performing a relatively coarse pre-scan of the specimen, along a pre-scan trajectory; At selected positions pi on said pre-scan trajectory, analyzing said components Dx, Dy and also a scalar intensity sensor value Ds; Using said analysis of Dx, Dy and Ds to classify a specimen composition at each position pi into one of a grou
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: May 26, 2020
    Assignee: FEI Company
    Inventors: Erik Michiel Franken, Ivan Lazic, Bart Jozef Janssen
  • Publication number: 20190295814
    Abstract: A method of imaging a specimen in a Scanning Transmission Charged Particle Microscope, comprising the following steps: Providing the specimen on a specimen holder; Providing a beam of charged particles that is directed from a source through an illuminator so as to irradiate the specimen; Providing a segmented detector for detecting a flux of charged particles traversing the specimen; Causing said beam to scan across a surface of the specimen, and combining signals from different segments of the detector so as to produce a vector output from the detector at each scan position, said vector output having components Dx, Dy along respective X, Y coordinate axes, specifically comprising: Performing a relatively coarse pre-scan of the specimen, along a pre-scan trajectory; At selected positions pi on said pre-scan trajectory, analyzing said components Dx, Dy and also a scalar intensity sensor value Ds; Using said analysis of Dx, Dy and Ds to classify a specimen composition at each position pi into one of a grou
    Type: Application
    Filed: February 21, 2019
    Publication date: September 26, 2019
    Inventors: Erik Michiel FRANKEN, Ivan LAZIC, Bart Jozef JANSSEN
  • Patent number: 10389955
    Abstract: When detecting particulate radiation, such as electrons, with a pixelated detector, a cloud of electron/hole pairs is formed in the detector. Using the signal caused by this cloud of electron/hole pairs, a position of the impact is estimated. When the size of the cloud is comparable to the pixel size, or much smaller, the estimated position shows a strong bias to the center of the pixel and the corners, as well to the middle of the borders. This hinders forming an image with super-resolution. By shifting the position or by attributing the electron to several sub-pixels this bias can be countered, resulting in a more truthful representation.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: August 20, 2019
    Assignee: FEI Company
    Inventors: Bart Jozef Janssen, Erik Michiel Franken, Maarten Kuijper, Lingbo Yu
  • Publication number: 20190228949
    Abstract: A method of using a Transmission Charged Particle Microscope, comprising: Providing a specimen on a specimen holder; Using an illumination system to direct a beam of charged particles from a source onto said specimen; Using an imaging system to direct charged particles that are transmitted through the specimen onto a detector, further comprising the following actions: In an acquisition step, lasting a time interval T, using said detector in particle counting mode to register spatiotemporal data relating to individual particle detection incidences, and to output said spatiotemporal data in raw form, without assembly into an image frame; In a subsequent rendering step, assembling a final image from said spatiotemporal data, while performing a mathematical correction operation.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 25, 2019
    Inventors: Bart Jozef JANSSEN, Lingbo YU, Erik Michiel FRANKEN
  • Publication number: 20190075258
    Abstract: When detecting particulate radiation, such as electrons, with a pixelated detector, a cloud of electron/hole pairs is formed in the detector. Using the signal caused by this cloud of electron/hole pairs, a position of the impact is estimated. When the size of the cloud is comparable to the pixel size, or much smaller, the estimated position shows a strong bias to the center of the pixel and the corners, as well to the middle of the borders. This hinders forming an image with super-resolution. By shifting the position or by attributing the electron to several sub-pixels this bias can be countered, resulting in a more truthful representation.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Applicant: FEI Company
    Inventors: Bart Josef Janssen, Erik Michiel Franken, Maarten Kuijper, Lingbo Yu
  • Patent number: 10122946
    Abstract: When detecting particulate radiation, such as electrons, with a pixelated detector, a cloud of electron/hole pairs is formed in the detector. Using the signal caused by this cloud of electron/hole pairs, a position of the impact is estimated. When the size of the cloud is comparable to the pixel size, or much smaller, the estimated position shows a strong bias to the center of the pixel and the corners, as well to the middle of the borders. This hinders forming an image with super-resolution. By shifting the position or by attributing the electron to several sub-pixels this bias can be countered, resulting in a more truthful representation.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: November 6, 2018
    Assignee: FEI Company
    Inventors: Bart Jozef Janssen, Erik Michiel Franken, Maarten Kuijper, Lingbo Yu
  • Publication number: 20170134674
    Abstract: When detecting particulate radiation, such as electrons, with a pixelated detector, a cloud of electron/hole pairs is formed in the detector. Using the signal caused by this cloud of electron/hole pairs a position of the impact is estimated. When the size of the cloud is comparable to the pixel size, or much smaller, the estimated position shows a strong bias to the center of the pixel and the corners, as well to the middle of the borders. This hinders forming an image with super-resolution. By shifting the position or by attributing the electron to several sub-pixels this bias can be countered, resulting in a more truthful representation.
    Type: Application
    Filed: July 25, 2016
    Publication date: May 11, 2017
    Applicant: FEI Company
    Inventors: Bart Jozef Janssen, Erik Michiel Franken, Maarten Kuijper, Lingbo Yu
  • Patent number: 8912491
    Abstract: The invention relates to a method of performing tomographic imaging of a sample comprising providing a beam of charged particles; providing the sample on a sample holder that can be tilted; in an imaging step, directing the beam through the sample to image the sample; repeating this procedure at each of a series of sample tilts to acquire a set of images; in a reconstruction step, mathematically processing images from said set to construct a composite image, whereby in said imaging step, for a given sample tilt, a sequence of component images is captured at a corresponding sequence of focus settings; and in said reconstruction step, for at least one member of said series of sample tilts, multiple members of said sequence of component images are used in said mathematical image processing. This renders a 3D imaging cube rather than a 2D imaging sheet at a given sample tilt.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 16, 2014
    Assignee: FEI Company
    Inventors: Remco Schoenmakers, Uwe Luecken, Erik Michiel Franken
  • Publication number: 20140145077
    Abstract: The invention relates to a method of performing tomographic imaging of a sample comprising providing a beam of charged particles; providing the sample on a sample holder that can be tilted; in an imaging step, directing the beam through the sample to image the sample; repeating this procedure at each of a series of sample tilts to acquire a set of images; in a reconstruction step, mathematically processing images from said set to construct a composite image, whereby in said imaging step, for a given sample tilt, a sequence of component images is captured at a corresponding sequence of focus settings; and in said reconstruction step, for at least one member of said series of sample tilts, multiple members of said sequence of component images are used in said mathematical image processing. This renders a 3D imaging cube rather than a 2D imaging sheet at a given sample tilt.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 29, 2014
    Applicant: FEI Company
    Inventors: Remco Schoenmakers, Uwe Luecken, Erik Michiel Franken