Patents by Inventor Erik T. Dale

Erik T. Dale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230191550
    Abstract: A machine tool chip removal device including a coupling interface to couple with a rotatable spindle of a machine tool to facilitate rotation of the machine tool chip removal device about an axis at a rotational speed. The chip removal device can also include a main fluid channel with an opening to receive pressurized fluid from the machine tool. The chip removal device can further include a first fluid delivery channel and a second fluid delivery channel to direct fluid in different directions. Each fluid delivery channel can be in fluid communication with the main fluid channel. In addition, the chip removal device can include one or more valves associated with the first and second fluid delivery channels to selectively allow fluid passage from the main fluid channel to the fluid delivery channels. The one or more valves can be actuated by varying fluid pressure and/or rotational speed.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Inventors: Erik T. Dale, Paul D. Nowakowski, Raymundo Blanco
  • Patent number: 11583969
    Abstract: A machine tool chip removal device including a coupling interface to couple with a rotatable spindle of a machine tool to facilitate rotation of the machine tool chip removal device about an axis at a rotational speed. The chip removal device can also include a main fluid channel with an opening to receive pressurized fluid from the machine tool. The chip removal device can further include a first fluid delivery channel and a second fluid delivery channel to direct fluid in different directions. Each fluid delivery channel can be in fluid communication with the main fluid channel. In addition, the chip removal device can include one or more valves associated with the first and second fluid delivery channels to selectively allow fluid passage from the main fluid channel to the fluid delivery channels. The one or more valves can be actuated by varying fluid pressure and/or rotational speed.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: February 21, 2023
    Assignee: Raytheon Company
    Inventors: Erik T. Dale, Paul D. Nowakowski, Raymundo Blanco
  • Publication number: 20210308816
    Abstract: A machine tool chip removal device including a coupling interface to couple with a rotatable spindle of a machine tool to facilitate rotation of the machine tool chip removal device about an axis at a rotational speed. The chip removal device can also include a main fluid channel with an opening to receive pressurized fluid from the machine tool. The chip removal device can further include a first fluid delivery channel and a second fluid delivery channel to direct fluid in different directions. Each fluid delivery channel can be in fluid communication with the main fluid channel. In addition, the chip removal device can include one or more valves associated with the first and second fluid delivery channels to selectively allow fluid passage from the main fluid channel to the fluid delivery channels. The one or more valves can be actuated by varying fluid pressure and/or rotational speed.
    Type: Application
    Filed: January 11, 2021
    Publication date: October 7, 2021
    Inventors: Erik T. Dale, Paul D. Nowakowski, Raymundo Blanco
  • Patent number: 11110562
    Abstract: A machine tool chip removal device including a coupling interface to couple with a rotatable spindle of a machine tool to facilitate rotation of the machine tool chip removal device about an axis at a rotational speed. The chip removal device can also include a main fluid channel with an opening to receive pressurized fluid from the machine tool. The chip removal device can further include a first fluid delivery channel and a second fluid delivery channel to direct fluid in different directions. Each fluid delivery channel can be in fluid communication with the main fluid channel. In addition, the chip removal device can include one or more valves associated with the first and second fluid delivery channels to selectively allow fluid passage from the main fluid channel to the fluid delivery channels. The one or more valves can be actuated by varying fluid pressure and/or rotational speed.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: September 7, 2021
    Assignee: 2865-15.7253.US.NP
    Inventors: Erik T. Dale, Paul D. Nowakowski, Raymundo Blanco
  • Patent number: 10399084
    Abstract: A system for screening deburring media during deburring operations of a hardware part comprises a deburring machine comprising a media slurry basin, a deburring media slurry disposed in the media slurry basin, and a media screening device freely movable within the deburring media slurry to define a dynamic zone of capture to capture noncompliant media. The media screening device can comprise a housing defining an inner chamber, and can comprise a plurality of openings each sized to restrict compliant deburring media from passing through the opening, and each opening sized to permit passage of noncompliant deburring media into the inner chamber. Each opening can comprise a counterbore. The media screening device can comprises at least one removable housing body removably coupled to the housing to facilitate removal of captured noncompliant deburring media. A method is disclosed for screening deburring media during deburring of a hardware part.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 3, 2019
    Assignee: Raytheon Company
    Inventors: Erik T. Dale, Luis E. Silva
  • Publication number: 20190099761
    Abstract: A system for screening deburring media during deburring operations of a hardware part comprises a deburring machine comprising a media slurry basin, a deburring media slurry disposed in the media slurry basin, and a media screening device freely movable within the deburring media slurry to define a dynamic zone of capture to capture noncompliant media. The media screening device can comprise a housing defining an inner chamber, and can comprise a plurality of openings each sized to restrict compliant deburring media from passing through the opening, and each opening sized to permit passage of noncompliant deburring media into the inner chamber. Each opening can comprise a counterbore. The media screening device can comprises at least one removable housing body removably coupled to the housing to facilitate removal of captured noncompliant deburring media. A method is disclosed for screening deburring media during deburring of a hardware part.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Erik T. Dale, Luis E. Silva
  • Publication number: 20180200853
    Abstract: A machine tool chip removal device including a coupling interface to couple with a rotatable spindle of a machine tool to facilitate rotation of the machine tool chip removal device about an axis at a rotational speed. The chip removal device can also include a main fluid channel with an opening to receive pressurized fluid from the machine tool. The chip removal device can further include a first fluid delivery channel and a second fluid delivery channel to direct fluid in different directions. Each fluid delivery channel can be in fluid communication with the main fluid channel. In addition, the chip removal device can include one or more valves associated with the first and second fluid delivery channels to selectively allow fluid passage from the main fluid channel to the fluid delivery channels. The one or more valves can be actuated by varying fluid pressure and/or rotational speed.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 19, 2018
    Inventors: Erik T. Dale, Paul D. Nowakowski, Raymundo Blanco
  • Patent number: 8658955
    Abstract: Some embodiments relate to an optical assembly that includes an energy collection system that collects energy and a heat shield that axially restrains the energy collection system. The optical assembly further includes a sensor and a structure which supports the energy collection system such that the energy collection system directs the energy to the sensor. Other embodiments relate to a projectile that includes a propulsion system, a guidance system and an optical assembly as described above. Other embodiments relate to a method of directing a projectile that includes collecting energy using an energy collection system; directing the energy to a sensor; axially restraining the energy collection system using a heat shield; using a guidance system to determine the position of the projectile based on data received from the sensor; and directing the projectile toward the destination using a propulsion system that is commanded by a guidance system.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 25, 2014
    Assignee: Raytheon Company
    Inventor: Erik T. Dale
  • Patent number: 8375861
    Abstract: Some embodiments pertain to a projectile that includes a frame and a first gimbal that is rotatably supported by the frame. The projectile further includes a second gimbal that is rotatably supported by the first gimbal. A sensor is supported by the second gimbal such that an adjustment mechanism is able to maneuver the first and second gimbals to adjust the position of the sensor. The projectile further includes a stop that is attached to the frame. The stop may be a cup that surrounds a bottom portion of the sensor. The cup provides a barrier to prevent the adjustment mechanism from maneuvering the sensor outside a designated area.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: February 19, 2013
    Assignee: Raytheon Company
    Inventors: Erik T. Dale, Ryan A. Egbert
  • Publication number: 20120256040
    Abstract: Some embodiments relate to an optical assembly that includes an energy collection system that collects energy and a heat shield that axially restrains the energy collection system. The optical assembly further includes a sensor and a structure which supports the energy collection system such that the energy collection system directs the energy to the sensor. Other embodiments relate to a projectile that includes a propulsion system, a guidance system and an optical assembly as described above. Other embodiments relate to a method of directing a projectile that includes collecting energy using an energy collection system; directing the energy to a sensor; axially restraining the energy collection system using a heat shield; using a guidance system to determine the position of the projectile based on data received from the sensor; and directing the projectile toward the destination using a propulsion system that is commanded by a guidance system.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: Raytheon Company
    Inventor: Erik T. Dale
  • Publication number: 20120024185
    Abstract: Some embodiments pertain to a projectile that includes a frame and a first gimbal that is rotatably supported by the frame. The projectile further includes a second gimbal that is rotatably supported by the first gimbal. A sensor is supported by the second gimbal such that an adjustment mechanism is able to maneuver the first and second gimbals to adjust the position of the sensor. The projectile further includes a stop that is attached to the frame. The stop may be a cup that surrounds a bottom portion of the sensor. The cup provides a barrier to prevent the adjustment mechanism from maneuvering the sensor outside a designated area.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Applicant: Raytheon Company
    Inventors: Erik T. Dale, Ryan A. Egbert