Patents by Inventor Erik Toomre

Erik Toomre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170120538
    Abstract: A method and an apparatus for collecting a powdered material after a print job in powder bed fusion additive manufacturing may involve a build platform supporting a powder bed capable of tilting, inverting, and shaking to separate the powder bed substantially from the build platform in a hopper. The powdered material may be collected in a hopper for reuse in later print jobs. The powder collecting process may be automated to increase efficiency of powder bed fusion additive manufacturing.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170123222
    Abstract: A method and an apparatus pertaining to polarization combining in additive manufacturing may involve emitting two or more beams of light with a first intensity. Each of the two or more beams of light may be polarized and may have a majority polarization state and a minority polarization state. A respective polarization pattern may be applied on the majority polarization state of each of the two or more beams of light. The two or more beams of light may be combined to provide a single beam of light.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120537
    Abstract: An apparatus and a method for powder bed fusion additive manufacturing involve a multiple-chamber design achieving a high efficiency and throughput. The multiple-chamber design features concurrent printing of one or more print jobs inside one or more build chambers, side removals of printed objects from build chambers allowing quick exchanges of powdered materials, and capabilities of elevated process temperature controls of build chambers and post processing heat treatments of printed objects. The multiple-chamber design also includes a height-adjustable optical assembly in combination with a fixed build platform method suitable for large and heavy printed objects.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120334
    Abstract: A method of additive manufacture is disclosed. The method may include creating, by a 3D printer contained within an enclosure, a part having a weight greater than or equal to 2,000 kilograms. A gas management system may maintain gaseous oxygen within the enclosure atmospheric level. In some embodiments, a wheeled vehicle may transport the part from inside the enclosure, through an airlock, as the airlock operates to buffer between a gaseous environment within the enclosure and a gaseous environment outside the enclosure, and to a location exterior to both the enclosure and the airlock.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120335
    Abstract: Additive manufacturing can involve dispensing a powdered material to form a layer of a powder bed on a support surface of a build platform.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170123237
    Abstract: A method and an apparatus pertaining to recycling and reuse of unwanted light in additive manufacturing can multiplex multiple beams of light including at least one or more beams of light from one or more light sources. The multiple beams of light may be reshaped and blended to provide a first beam of light. A spatial polarization pattern may be applied on the first beam of light to provide a second beam of light. Polarization states of the second beam of light may be split to reflect a third beam of light, which may be reshaped into a fourth beam of light. The fourth beam of light may be introduced as one of the multiple beams of light to result in a fifth beam of light.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120518
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved optical systems supporting beam combining, beam steering, and both patterned and unpatterned beam recycling and re-use are described.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene M. Berdichevsky
  • Publication number: 20170120332
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved chamber designs, multiple chambers, powder handling and re-use systems, and powder characterization methods are disclosed.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120530
    Abstract: A method and an apparatus of a powder bed fusion additive manufacturing system that enables a quick change in the optical beam delivery size and intensity across locations of a print surface for different powdered materials while ensuring high availability of the system. A dynamic optical assembly containing a set of lens assemblies of different magnification ratios and a mechanical assembly may change the magnification ratios as needed. The dynamic optical assembly may include a transitional and rotational position control of the optics to minimize variations of the optical beam sizes across the print surface.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120336
    Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 8519715
    Abstract: A test fixture for testing a plurality of longitudinal battery cells includes: a base plate; a plurality of holding structures for holding the battery cells, the holding structures being mounted on the base plate and configured to hold the battery cells with their longitudinal axes being perpendicular with respect to the base plate; and a plurality of contacts arranged on the base plate to electrically contact positive and negative terminals of each of the battery cells.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: August 27, 2013
    Assignees: Volkswagen AG, Audi AG, Lisa Draexlmaier GmbH
    Inventors: Erik Toomre, Karsten Rueter, Guido Hofer
  • Publication number: 20120133371
    Abstract: A test fixture for testing a plurality of longitudinal battery cells includes: a base plate; a plurality of holding structures for holding the battery cells, the holding structures being mounted on the base plate and configured to hold the battery cells with their longitudinal axes being perpendicular with respect to the base plate; and a plurality of contacts arranged on the base plate to electrically contact positive and negative terminals of each of the battery cells.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 31, 2012
    Inventors: Erik Toomre, Karsten Rueter, Guido Hofer