Patents by Inventor Erik Unterborn

Erik Unterborn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12218120
    Abstract: A structure is provided that includes a first active circuit in which at least one of areas surrounding the first active circuit includes an active circuit-containing region. A second active circuit is spaced apart from the first active circuit. The second active circuit includes a circuit mimic fill area present in at least one of the areas surrounding the second active circuit. The circuit mimic fill area substantially matches the active circuit-containing region that is adjacent to the first active circuit. The circuit mimic fill area is located on an equivalent side of the second active circuit as the active circuit-containing region that is present adjacent the first active circuit. The use of the circuit mimic fill mitigates the effects over medium range and beyond distances that cause device failure.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: February 4, 2025
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Matthew Stephen Angyal, Noah Zamdmer, Varadarajan Vidya, James Strom, Grant P. Kesselring, Erik Unterborn
  • Publication number: 20250022500
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: September 17, 2024
    Publication date: January 16, 2025
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20250014621
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: September 17, 2024
    Publication date: January 9, 2025
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20240379144
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20240379143
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20240257854
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 1, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20220406769
    Abstract: A structure is provided that includes a first active circuit in which at least one of areas surrounding the first active circuit includes an active circuit-containing region. A second active circuit is spaced apart from the first active circuit. The second active circuit includes a circuit mimic fill area present in at least one of the areas surrounding the second active circuit. The circuit mimic fill area substantially matches the active circuit-containing region that is adjacent to the first active circuit. The circuit mimic fill area is located on an equivalent side of the second active circuit as the active circuit-containing region that is present adjacent the first active circuit. The use of the circuit mimic fill mitigates the effects over medium range and beyond distances that cause device failure.
    Type: Application
    Filed: June 22, 2021
    Publication date: December 22, 2022
    Inventors: Dureseti Chidambarrao, Matthew Stephen Angyal, Noah Zamdmer, Varadarajan Vidya, James Strom, Grant P. Kesselring, Erik Unterborn
  • Patent number: 11527953
    Abstract: A phase locked loop having a charge pump is described. The charge pump relies on close matching of FETs (Field Effect Transistor) electrical parameters to FETs in a current reference circuit. To achieve close matching of FET electrical performance, FEOL (Front End Of Line), comprising all FET shapes, of the current pump is identical in shapes and layout to the current reference circuit. BEOL (Back End Of Line) differs between the charge pump and the current reference circuit. The charge pump and the current reference circuit are arranged in a row. A shield circuit having FEOL shapes and layout identical to the current pump may be placed at each end of the row.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: December 13, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James Strom, John Borkenhagen, Ann Chen Wu, Erik Unterborn, Grant P. Kesselring
  • Patent number: 11303285
    Abstract: A phase locked loop having a charge pump is described. The charge pump has circuitry to select a mode for each semiconductor chip from a plurality of modes to enhance yield. Nine unique modes are defined from which a selection is made for each chip. The selected mode mitigates effects of device mistracking anomalies for each chip. A method is provided to show how the modes are determined and prioritized.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: April 12, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James Strom, Erik Unterborn, Michael Sperling, Dureseti Chidambarrao, Grant P. Kesselring