Patents by Inventor Erik Waldorff

Erik Waldorff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220176101
    Abstract: A system and method for pulsed electromagnetic fields (PEMF) tissue engineering enhances musculoskeletal tissue stimulation. A tissue engineering device may include both low and high pulse frequency signal generation components that may alternatively drive one or more coils to generate PEMFs. These PEMFs may be applied to bone tissue, tendons, ligaments, and/or cartilage. A prescribed treatment regimen using the tissue engineering device may include a first period of time where a first pulse frequency is used in treatment that supports tissue proliferation followed by a second period of time where a second pulse frequency (less than the first pulse frequency) is used in treatment that supports tissue differentiation. A treatment regimen may also include, with the frequency characteristic, applying a slew rate to the pulse characteristics that is on the order of around 30 to 100 Tesla per second to drive tissue differentiation in a targeted manner.
    Type: Application
    Filed: January 28, 2022
    Publication date: June 9, 2022
    Inventors: James T. Ryaby, Erik Waldorff, Ronald Midura, Maciej Zborowski
  • Patent number: 11235144
    Abstract: A system and method for pulsed electromagnetic fields (PEMF) tissue engineering enhances musculoskeletal tissue stimulation. A tissue engineering device may include both low and high pulse frequency signal generation components that may alternatively drive one or more coils to generate PEMFs. These PEMFs may be applied to bone tissue, tendons, ligaments, and/or cartilage. A prescribed treatment regimen using the tissue engineering device may include a first period of time where a first pulse frequency is used in treatment that supports tissue proliferation followed by a second period of time where a second pulse frequency (less than the first pulse frequency) is used in treatment that supports tissue differentiation. A treatment regimen may also include, with the frequency characteristic, applying a slew rate to the pulse characteristics that is on the order of around 30 to 100 Tesla per second to drive tissue differentiation in a targeted manner.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: February 1, 2022
    Assignee: ORTHOFIX US LLC
    Inventors: James T. Ryaby, Erik Waldorff, Ronald Midura, Maciej Zborowski
  • Publication number: 20200276435
    Abstract: A system and method for pulsed electromagnetic fields (PEMF) tissue engineering enhances musculoskeletal tissue stimulation. A tissue engineering device may include both low and high pulse frequency signal generation components that may alternatively drive one or more coils to generate PEMFs. These PEMFs may be applied to bone tissue, tendons, ligaments, and/or cartilage. A prescribed treatment regimen using the tissue engineering device may include a first period of time where a first pulse frequency is used in treatment that supports tissue proliferation followed by a second period of time where a second pulse frequency (less than the first pulse frequency) is used in treatment that supports tissue differentiation. A treatment regimen may also include, with the frequency characteristic, applying a slew rate to the pulse characteristics that is on the order of around 30 to 100 Tesla per second to drive tissue differentiation in a targeted manner.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: James T. Ryaby, Erik Waldorff, Ronald Midura, Maciej Zborowski
  • Patent number: 10653881
    Abstract: A system and method for pulsed electromagnetic fields (PEMF) tissue engineering enhances musculoskeletal tissue stimulation. A tissue engineering device may include both low and high pulse frequency signal generation components that may alternatively drive one or more coils to generate PEMFs. These PEMFs may be applied to bone tissue, tendons, ligaments, and/or cartilage. A prescribed treatment regimen using the tissue engineering device may include a first period of time where a first pulse frequency is used in treatment that supports tissue proliferation followed by a second period of time where a second pulse frequency (less than the first pulse frequency) is used in treatment that supports tissue differentiation. A treatment regimen may also include, with the frequency characteristic, applying a slew rate to the pulse characteristics that is on the order of around 30 to 100 Tesla per second to drive tissue differentiation in a targeted manner.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: May 19, 2020
    Assignee: Orthofix, Inc.
    Inventors: James T. Ryaby, Erik Waldorff, Ronald Midura, Maciej Zborowski
  • Publication number: 20180200503
    Abstract: A system and method for pulsed electromagnetic fields (PEMF) tissue engineering enhances musculoskeletal tissue stimulation. A tissue engineering device may include both low and high pulse frequency signal generation components that may alternatively drive one or more coils to generate PEMFs. These PEMFs may be applied to bone tissue, tendons, ligaments, and/or cartilage. A prescribed treatment regimen using the tissue engineering device may include a first period of time where a first pulse frequency is used in treatment that supports tissue proliferation followed by a second period of time where a second pulse frequency (less than the first pulse frequency) is used in treatment that supports tissue differentiation. A treatment regimen may also include, with the frequency characteristic, applying a slew rate to the pulse characteristics that is on the order of around 30 to 100 Tesla per second to drive tissue differentiation in a targeted manner.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 19, 2018
    Inventors: James T. Ryaby, Erik Waldorff, Ronald Midura, Maciej Zborowski