Patents by Inventor Erika Bauer

Erika Bauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9605106
    Abstract: The present invention relates to a method for producing a polyester polyol having a concentration of ether groups in the range from 9.0 mol/kg of polyester polyol to 22 mol/kg polyester polyol, characterized in that (i) in a first step (A) isophthalic acid, optionally in the form of a C1-C4 alkyl ester, and/or terephthalic acid, optionally in the form of a C1-C4 alkyl ester, is reacted with (B) oligoethylene glycol of the formula H—(OCH2CH2)n—OH having a numerical average number of oxyethylene groups n in the range from 3.0 to 9.0, in the presence of at least one catalyst selected from the group made up of tin(II) salts, bismuth(II) salts, and titanium tetraalkoxylates, at a temperature in the range from 160° C. to 240° C.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: March 28, 2017
    Assignee: Covestro Deutschland AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van De Braak, Jürgen Schlossmacher, Silvia Kasperek
  • Patent number: 9328196
    Abstract: The present invention relates to a process for the preparation of polyricinoleic acid ester polyols having primary hydroxyl end groups. It furthermore relates to polyricinoleic acid ester polyols obtainable according to the invention and polyurethane polymers prepared using these polyols. The process comprises the steps: a) polycondensation of ricinoleic acid until a hydroxyl number of >0 mg of KOH/g to <60 mg of KOH/g is reached; and b) reaction of the product obtained in step a) or of a secondary product of the product obtained in step a) comprising carboxyl groups with an epoxide of the general formula (I), wherein R1 represents hydrogen, an alkyl radical or an aryl radical, with the proviso that >80% by weight to <100% by weight, based on the total amount of the epoxide (I) employed, is ethylene oxide and the reaction is carried out in the presence of an amine as the catalyst.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: May 3, 2016
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Jörg Hofmann, Erika Bauer, Bert Klesczewski, Klaus Lorenz
  • Patent number: 9193822
    Abstract: The invention relates to a process for producing polyester polyols with secondary hydroxyl end groups, including the step of the reaction of a polyester including carboxyl end groups with an epoxide of the general formula (1): wherein R1 stands for an alkyl residue or an aryl residue and the reaction is carried out in the presence of a catalyst that includes at least one nitrogen atom per molecule. The process is distinguished in that the polyester including carboxyl end groups exhibits an acid value from ?25 mg KOH/g to ?400 mg KOH/g and a hydroxyl value from ?5 mg KOH/g and in that the polyester including carboxyl end groups is produced by ?1.03 mol to ?1.90 mol carboxyl groups or carboxyl-group equivalents of an acid component being employed per mol hydroxyl groups of an alcohol. The polyester polyols obtained, including secondary hydroxyl end groups, can be used for the purpose of producing polyurethane polymers.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 24, 2015
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Jörg Hofmann, Klaus Lorenz, Bert Klesczewski
  • Patent number: 9139685
    Abstract: The invention relates to a process for the preparation of a polyurethane polymer, comprising the step of reaction of A) polyester polyols with secondary hydroxyl end groups, which are obtainable from the reaction of a polyester comprising carboxyl end groups with an epoxide of the general formula (1): wherein R1 represents an alkyl radical or an aryl radical and wherein the polyester comprising carboxyl end groups has an acid number of from ?25 mg of KOH/g to ?400 mg of KOH/g and a hydroxyl number of ?5 mg of KOH/g, with B) polyisocyanates which are chosen from the group comprising toluoylene-diisocyanate, diphenylmethane-diisocyanate, polymeric diphenylmethane-diisocyanate, xylylene-diisocyanate, naphthylene-diisocyanate, hexamethylene-diisocyanate, diisocyanatodicyclohexylmethane and/or isophorone-diisocyanate. The invention furthermore relates to polyurethane polymers prepared by such a process.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 22, 2015
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Jörg Hofmann, Bert Klesczewski, Erika Bauer, Klaus Lorenz
  • Patent number: 9029495
    Abstract: The present invention relates to a process for producing polyether polyols having primary hydroxyl end groups, comprising the steps of reacting a starter compound containing active hydrogen atoms with an epoxide under double metal cyanide catalysis, reacting the resulting product with a cyclic carboxylic anhydride and reacting this resulting product with ethylene oxide in the presence of a catalyst containing at least one nitrogen atom per molecule, excluding non-cyclic, identically substituted tertiary amines. The invention further relates to polyether polyols obtainable by this process, compositions containing said polyols and polyurethane polymers based on said polyols.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 12, 2015
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Jörg Hofmann, Klaus Lorenz, Norbert Hahn
  • Patent number: 8697830
    Abstract: Light-stable, sinterable, thermoplastic polyurethanes with improved blooming behavior and good thermal stability as well as good technical processability are produced from an aliphatic diisocyanate using one or more chain extenders corresponding to a specified formula. These polyurethanes are particularly useful in the production of molded articles, particularly molded articles for automotive interiors.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: April 15, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Henricus Peerlings, Wolfgang Kaufhold, Hartmut Nefzger, Erika Bauer, Markus Broich
  • Publication number: 20130345330
    Abstract: A process for the preparation of polyricinoleic acid esters comprising the step of reaction of ricinoleic acid with an alcohol component which comprises mono- and/or polyfunctional alcohols having a molecular weight of ?32 g/mol to ?40 g/mol, wherein the reaction is carried out at least partly in the presence of a catalyst. The amount of catalyst, based on the total weight of the ricinoleic acid and the alcohol component, is in a range of from ?10 ppm to ?100 ppm. The reaction is ended when the acid number of the reaction product obtained is ?5 mg of KOH/g to ?100 mg of KOH/g. The invention furthermore relates to a polyurethane polymer, in particular a flexible polyurethane foam, which is obtainable using these polyricinoleic acid esters.
    Type: Application
    Filed: November 18, 2011
    Publication date: December 26, 2013
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Hartmut Nefzger, Erika Bauer, Bert Klesczewski, Jüergen Schlossmacher, Sven Meyer-Ahrens, Manfred Schmidt
  • Patent number: 8592623
    Abstract: Polyester polyols are produced from at least one carboxylic acid hydride and diethylene glycol by a process in which the formation of 1,4-dioxane is suppressed. These polyester polyols are useful for producing polyurethane (PUR) and polyisocyanurate (PIR) foams and metal composite elements containing these PUR or PIR foams.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 26, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Rolf Roers, Hartmut Nefzger, Erika Bauer, Johannes Van De Braak, Torsten Heinemann, Jürgen Schloβmacher
  • Publication number: 20130261205
    Abstract: The present invention relates to a process for the preparation of polyricinoleic acid ester polyols having primary hydroxyl end groups. It furthermore relates to polyricinoleic acid ester polyols obtainable according to the invention and polyurethane polymers prepared using these polyols. The process comprises the steps: a) polycondensation of ricinoleic acid until a hydroxyl number of >0 mg of KOH/g to <60 mg of KOH/g is reached; and b) reaction of the product obtained in step a) or of a secondary product of the product obtained in step a) comprising carboxyl groups with an epoxide of the general formula (I), wherein R1 represents hydrogen, an alkyl radical or an aryl radical, with the proviso that >80% by weight to <100% by weight, based on the total amount of the epoxide (I) employed, is ethylene oxide and the reaction is carried out in the presence of an amine as the catalyst.
    Type: Application
    Filed: November 18, 2011
    Publication date: October 3, 2013
    Applicant: Bater Intellectual Property GmbH
    Inventors: Hartmut Nefzger, Jörg Hofmann, Erika Bauer, Bert Klesczewski, Klaus Lorenz
  • Patent number: 8481606
    Abstract: The invention relates to the production and use of polyester polyols, formed from at least one carboxylic acid anhydride and ethylene glycol, wherein a specialized reaction control substantially suppresses the formation of 1,4-dioxane from diethylene glycol.
    Type: Grant
    Filed: October 24, 2009
    Date of Patent: July 9, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van de Braak, Jürgen Schloβmacher
  • Patent number: 8334035
    Abstract: Polyester polyols are produced by reacting terephthalic acid with a glycol corresponding to the formula H—(OCH2CH2)n—OH and an aliphatic dicarboxylic acid. These polyester polyols are particularly useful for the production of polyurethane) (PUR) and polyurethane/polyisocyanurate (PUR/PIR) foams for use in insulation applications.
    Type: Grant
    Filed: March 27, 2010
    Date of Patent: December 18, 2012
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Uwe Kuenzel, Jürgen Schloβmacher, Lutz Brassat
  • Publication number: 20120196999
    Abstract: The present invention relates to a process for producing polyether polyols having primary hydroxyl end groups, comprising the steps of reacting a starter compound containing active hydrogen atoms with an epoxide under double metal cyanide catalysis, reacting the resulting product with a cyclic carboxylic anhydride and reacting this resulting product with ethylene oxide in the presence of a catalyst containing at least one nitrogen atom per molecule, excluding non-cyclic, identically substituted tertiary amines. The invention further relates to polyether polyols obtainable by this process, compositions containing said polyols and polyurethane polymers based on said polyols.
    Type: Application
    Filed: June 30, 2010
    Publication date: August 2, 2012
    Applicant: Bayer MaterialScienceAG
    Inventors: Hartmut Nefzger, Erika Bauer, Jörg Hofmann, Klaus Lorenz, Norbert Hahn
  • Publication number: 20120129966
    Abstract: The present invention relates to the production and use of polyester polyols produced from at least one aromatic dicarboxylic acid or an alkyl ester of an aromatic dicarboxylic acid or the anhydride of an aromatic dicarboxylic acid and at least one ?,?-diol, wherein the formation of 1,4-dioxane from diethylene glycol is largely suppressed by means of specific reaction management.
    Type: Application
    Filed: June 2, 2010
    Publication date: May 24, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van De Braak, Silvia Kasperek
  • Publication number: 20120123008
    Abstract: The invention relates to a process for the preparation of a polyurethane polymer, comprising the step of reaction of A) polyester polyols with secondary hydroxyl end groups, which are obtainable from the reaction of a polyester comprising carboxyl end groups with an epoxide of the general formula (1): wherein R1 represents an alkyl radical or an aryl radical and wherein the polyester comprising carboxyl end groups has an acid number of from ?25 mg of KOH/g to ?400 mg of KOH/g and a hydroxyl number of ?5 mg of KOH/g, with B) polyisocyanates which are chosen from the group comprising toluoylene-diisocyanate, diphenylmethane-diisocyanate, polymeric diphenylmethane-diisocyanate, xylylene-diisocyanate, naphthylene-diisocyanate, hexamethylene-diisocyanate, diisocyanatodicyclohexylmethane and/or isophorone-diisocyanate. The invention furthermore relates to polyurethane polymers prepared by such a process.
    Type: Application
    Filed: June 29, 2010
    Publication date: May 17, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Jörg Hofmann, Bert Klesczewski, Erika Bauer, Klaus Lorenz
  • Publication number: 20120123009
    Abstract: The present invention relates to a method for producing a polyester polyol having a concentration of ether groups in the range from 9.0 mol/kg of polyester polyol to 22 mol/kg polyester polyol, characterized in that (i) in a first step (A) isophthalic acid, optionally in the form of a C1-C4 alkyl ester, and/or terephthalic acid, optionally in the form of a C1-C4 alkyl ester, is reacted with (B) oligoethylene glycol of the formula H—(OCH2CH2)n—OH having a numerical average number of oxyethylene groups n in the range from 3.0 to 9.0, in the presence of at least one catalyst selected from the group made up of tin(II) salts, bismuth(II) salts, and titanium tetraalkoxylates, at a temperature in the range from 160° C. to 240° C.
    Type: Application
    Filed: May 18, 2010
    Publication date: May 17, 2012
    Applicant: BAYER MATERIAL SCIENCE AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van De Braak, Jürgen Schlossmacher, Silvia Kasperek
  • Publication number: 20120116114
    Abstract: The invention relates to a process for producing polyester polyols with secondary hydroxyl end groups, including the step of the reaction of a polyester including carboxyl end groups with an epoxide of the general formula (1): wherein R1 stands for an alkyl residue or an aryl residue and the reaction is carried out in the presence of a catalyst that includes at least one nitrogen atom per molecule. The process is distinguished in that the polyester including carboxyl end groups exhibits an acid value from ?25 mg KOH/g to ?400 mg KOH/g and a hydroxyl value from ?5 mg KOH/g and in that the polyester including carboxyl end groups is produced by ?1.03 mol to ?1.90 mol carboxyl groups or carboxyl-group equivalents of an acid component being employed per mol hydroxyl groups of an alcohol. The polyester polyols obtained, including secondary hydroxyl end groups, can be used for the purpose of producing polyurethane polymers.
    Type: Application
    Filed: May 4, 2010
    Publication date: May 10, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Jörg Hofmann, Klaus Lorenz, Bert Klesczewski
  • Publication number: 20120052228
    Abstract: Polyester polyols are produced by reacting terephthalic acid with a glycol corresponding to the formula H—(OCH2CH2)n—OH and an aliphatic dicarboxylic acid.
    Type: Application
    Filed: March 27, 2010
    Publication date: March 1, 2012
    Applicant: BAYER MATERIALSCIENCE AG
    Inventors: Hartmut Nefzger, Erika Bauer, Uwe Kuenzel, Jürgen Schlossmacher, Lutz Brassat
  • Patent number: 8110704
    Abstract: Stable NCO prepolymers are produced from polyisocyanates having a melting point greater than 70° C., preferably, naphthalene diisocyanate, having advantageous physical properties. An important feature of the process of the present invention is the rapid cooling of the prepolymer. The process of the present invention may be carried out on a continuous or batch basis. The prepolymers of the present invention are particularly suitable for the production of cast polyurethane elastomers.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: February 7, 2012
    Assignees: Bayer MaterialScience LLC, Bayer MaterialScince AG
    Inventors: James Michael Barnes, Hartmut Nefzger, Erika Bauer, Stefan Penninger, Thomas Schultz, Heinrich Lutz, Horst Di Mews, Charles S. Gracik
  • Publication number: 20110237697
    Abstract: The invention relates to the production and use of polyester polyols, formed from at least one carboxylic acid hydride and ethylene glycol, wherein a specialized reaction control stustantially suppresses the formation of 1,4-dioxane from diethylene glycol.
    Type: Application
    Filed: October 24, 2009
    Publication date: September 29, 2011
    Applicant: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van de Braak, Jürgen Schlobmacher
  • Publication number: 20110236671
    Abstract: Polyester polyols are produced from at least one carboxylic acid hydride and diethylene glycol by a process in which the formation of 1,4-dioxane is suppressed. These polyester polyols are useful for producing polyurethane (PUR) and polyisocyanurate (PIR) foams and metal composite elements containing these PUR or PIR foams.
    Type: Application
    Filed: November 3, 2009
    Publication date: September 29, 2011
    Applicant: BAYER MATERIAL SCIENCE AG
    Inventors: Rolf Roers, Hartmut Nefzger, Erika Bauer, Johannes Van De Braak, Torsten Heinemann, Jürgen Schlossmacher