Patents by Inventor Erika F. GARCIA

Erika F. GARCIA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959856
    Abstract: Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: April 16, 2024
    Assignee: California Institute of Technology
    Inventors: Imran R. Malik, Xiomara Linnette Madero, Erika F. Garcia, Sheel Mukesh Shah, Axel Scherer
  • Patent number: 11879162
    Abstract: A non-transitory computer-readable storage medium storing executable instructions to cause a system to detect a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a measured change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: January 23, 2024
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Publication number: 20230151440
    Abstract: A non-transitory computer-readable storage medium storing executable instructions to cause a system to detect a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a measured change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
    Type: Application
    Filed: July 5, 2022
    Publication date: May 18, 2023
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Patent number: 11414716
    Abstract: Medical systems for detecting a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a change in signal generated by the fluorophore and quencher, and measured by a sensor of the medical system, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, and measured by the sensor of the medical system, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: August 16, 2022
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Publication number: 20210002732
    Abstract: Medical systems for detecting a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a change in signal generated by the fluorophore and quencher, and measured by a sensor of the medical system, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, and measured by the sensor of the medical system, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
    Type: Application
    Filed: March 23, 2020
    Publication date: January 7, 2021
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Patent number: 10597737
    Abstract: Methods and kits for detecting a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. At least one of the primers is configured to hybridize to a region of the polynucleotide analyte encoding the genetic variation. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a change in signal generated by the fluorophore and quencher when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: March 24, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Publication number: 20190153548
    Abstract: This disclosure provides methods, compositions and kits for the detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, compositions, and kits for detecting analytes, genetic variations, monitoring reaction process, and monitoring analyte-analyte interactions by measuring signals. In some examples, the presence of signals or changes in signals may be used to construct signal profiles which can be used to detect analytes.
    Type: Application
    Filed: August 22, 2018
    Publication date: May 23, 2019
    Inventors: ADITYA RAJAGOPAL, MARK D. GOLDBERG, ERIKA F. GARCIA, XIOMARA L. MADERO, THOMAS A. TOMBRELLO, AXEL SCHERER
  • Patent number: 10081844
    Abstract: Methods of detecting at least one genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, the first primer and the second primer are specific for the polynucleotide analyte. A signal generated by the fluorophore and quencher is measured. PCR is performed with the first primer and the second primer using the polynucleotide analyte as a template, thereby amplifying the template. A signal generated by the fluorophore and quencher from the PCR amplification product is measured. Comparison is made of the signals; and a determination is made of the presence or absence of the at least one genetic variation based i) on the change in signal as determined; and ii) by comparing said change to the change in signal observed upon PCR amplification for a corresponding polynucleotide analyte lacking the at least one genetic variation.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 25, 2018
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Publication number: 20180052110
    Abstract: Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.
    Type: Application
    Filed: September 11, 2017
    Publication date: February 22, 2018
    Inventors: Imran R. MALIK, Xiomara Linnette MADERO, Erika F. GARCIA, Sheel Mukesh SHAH, Axel SCHERER
  • Publication number: 20180030551
    Abstract: This disclosure provides methods, compositions and kits for the detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, compositions, and kits for detecting analytes, genetic variations, monitoring reaction process, and monitoring analyte-analyte interactions by measuring signals. In some examples, the presence of signals or changes in signals may be used to construct signal profiles which can be used to detect analytes.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 1, 2018
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Patent number: 9791372
    Abstract: Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: October 17, 2017
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Imran R. Malik, Xiomara Linnette Madero, Erika F. Garcia, Sheel Mukesh Shah, Axel Scherer
  • Patent number: 9518291
    Abstract: Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers. The device may have a reaction cartridge with a reaction chamber to perform techniques such as polymerase chain reaction.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: December 13, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Imran R. Malik, Erika F. Garcia, Xiomara Linnette Madero, Axel Scherer
  • Patent number: 9416343
    Abstract: Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 16, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Imran R. Malik, Axel Scherer, Erika F. Garcia, Xiomara L. Madero
  • Patent number: 9284520
    Abstract: Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: March 15, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Imran R. Malik, Erika F. Garcia, Xiomara Linnette Madero, Axel Scherer
  • Patent number: 9090890
    Abstract: Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: July 28, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Imran R Malik, Erika F Garcia, Xiomara Linnette Madero, Axel Scherer
  • Patent number: 9090891
    Abstract: Methods and devices for biological sample preparation and analysis are disclosed. A device may have a circular arrangement of containers, with a connecting structure such as a disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. The device may be pen-shaped and have a sample drawing needle connected to the containers.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: July 28, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Xiomara Linnette Madero, Imran R Malik, Erika F Garcia, Axel Scherer
  • Patent number: 8968585
    Abstract: Methods to fabricate reaction cartridges for biological sample preparation and analysis are disclosed. A cartridge may have a reaction chamber and openings to allow fluids to enter the chamber. The cartridge may also have handles to facilitate its use. Such cartridges may be used for polymerase chain reaction.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: March 3, 2015
    Assignee: California Institute of Technology
    Inventors: Imran R. Malik, Axel Scherer, Erika F. Garcia, Xiomara L. Madero
  • Patent number: 8873055
    Abstract: Structures and methods are described for optical detection of physical, chemical and/or biological samples. An optical detection structure may include a LED source, multiple filters and single or multiple sample areas. A detector may be used to record a fluorescence signal. The sample area may allow the introduction of removable cartridges.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: October 28, 2014
    Assignee: California Institute of Technology
    Inventors: Imran R. Malik, Xiomara L. Madero, Erika F. Garcia, Axel Scherer
  • Publication number: 20140213471
    Abstract: This disclosure provides methods, compositions and kits for the detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, compositions, and kits for detecting analytes, genetic variations, monitoring reaction process, and monitoring analyte-analyte interactions by measuring signals. In some examples, the presence of signals or changes in signals may be used to construct signal profiles which can be used to detect analytes.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 31, 2014
    Applicant: California Institute of Technology
    Inventors: Aditya RAJAGOPAL, Mark D. GOLDBERG, Erika F. GARCIA, Xiomara L. MADERO, Thomas A. TOMBRELLO, Axel SCHERER
  • Publication number: 20140127796
    Abstract: Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 8, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Imran R. MALIK, Axel SCHERER, Erika F. GARCIA, Xiomara L. MADERO