Patents by Inventor Erin Maris

Erin Maris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9206361
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is provided to the ebullated bed system containing the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from rework materials, which form a slurry catalyst in-situ upon mixing with the heavy oil feedstock.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: December 8, 2015
    Assignee: Chevron U.S.A. .Inc.
    Inventors: Julie Chabot, Bruce E. Reynolds, Erin Maris, Shuwu Yang
  • Patent number: 9169449
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is introduced to the ebullated bed system with the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from at least a water-soluble metal precursor and pre-sulfided prior to being introduced with the heavy oil feedstock to the reactor system, or sulfided in-situ in the ebullated bed reactor in another embodiment.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 27, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Julie Chabot, Erin Maris, Sean Solberg, Kaidong Chen
  • Patent number: 8236169
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. At least an additive material selected from inhibitor additives, anti-foam agents, stabilizers, metal scavengers, metal contaminant removers, metal passivators, and sacrificial materials, in an amount of less than 1 wt. % of the heavy oil feedstock, is added to at least one of the contacting zones. In one embodiment, the additive material is an anti-foam agent. In another embodiment, the additive material is a sacrificial material for trapping heavy metals in the heavy oil feed and/or deposited coke, thus prolonging the life of the slurry catalyst.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: August 7, 2012
    Assignee: Chevron U.S.A. Inc
    Inventors: Joseph V Nguyen, Axel Brait, Julie Chabot, Bo Kou, Erin Maris, Rahul S. Bhaduri, Alexander E. Kuperman
  • Publication number: 20120152805
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is provided to the ebullated bed system containing the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from rework materials, which form a slurry catalyst in-situ upon mixing with the heavy oil feedstock.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Julie Chabot, Bruce E. Reynolds, Erin Maris, Shuwu Yang
  • Publication number: 20120152806
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is introduced to the ebullated bed system with the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from at least a water-soluble metal precursor and pre-sulfided prior to being introduced with the heavy oil feedstock to the reactor system, or sulfided in-situ in the ebullated bed reactor in another embodiment.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Bruce E. Reynolds, Julie Chabot, Erin Maris, Sean Solberg, Kaidong Chen
  • Patent number: 7938954
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system, in an amount ranging between 3 to 50 wt. % of the heavy oil feedstock.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: May 10, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang, Bruce Reynolds
  • Patent number: 7935243
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein the first contacting zone is operated at a temperature of at least 10° F. lower than a next contacting zone. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and, optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: May 3, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Patent number: 7897036
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein water and/or steam being injected into first contacting zone in an amount of 1 to 25 weight % on the weight of the heavy oil feedstock. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: March 1, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Publication number: 20110017636
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. At least an additive material selected from inhibitor additives, anti-foam agents, stabilizers, metal scavengers, metal contaminant removers, metal passivators, and sacrificial materials, in an amount of less than 1 wt. % of the heavy oil feedstock, is added to at least one of the contacting zones. In one embodiment, the additive material is an anti-foam agent. In another embodiment, the additive material is a sacrificial material for trapping heavy metals in the heavy oil feed and/or deposited coke, thus prolonging the life of the slurry catalyst.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Inventors: Joseph V. Nguyen, Bo Kou, Julie Chabot, Erin Maris, Axel Brait, Rahul S. Bhaduri, Alexander E. Kuperman
  • Publication number: 20100065474
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein the first contacting zone is operated at a temperature of at least 10° F. lower than a next contacting zone. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Publication number: 20100065473
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein water and/or steam being injected into first contacting zone in an amount of 1 to 25 weight % on the weight of the heavy oil feedstock. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Publication number: 20090008291
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system, in an amount ranging between 3 to 50 wt. % of the heavy oil feedstock.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 8, 2009
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang, Bruce Reynolds