Patents by Inventor Erlend Ronnekleiv

Erlend Ronnekleiv has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7480056
    Abstract: A method for interrogating time-multiplexed interferometric sensors using multiple interrogation pulses so as to increases the allowable interrogation pulse duty-cycle and improve the signal-to-noise ratio. In each TDM repetition period a sequence of multiple interrogation pulses are generated. The pulses in the sequence are separated by a time that is equal to the sensor imbalance. The phase from pulse to pulse in each TDM time-slot is modulated at a different, linear rate such that the pulse in time-slot m will have an optical frequency that is shifted by m??, where ?? is the sub-carrier frequency. Because multiple reflections do not need to fade out the inventive method can enhance the signal-to-noise ratio of interferometric sensors such as inline Fabry-Perot sensors.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: January 20, 2009
    Assignee: Optoplan AS
    Inventors: Ole Henrik Waagaard, Erlend Ronnekleiv
  • Patent number: 7466422
    Abstract: Unwanted signal components in time-division multiplexed (TDM) systems may lead to crosstalk and noise if these pulses overlap with signal pulses from an interrogated sensor. The crosstalk and noise are dominated by interference between the signal pulses from the interrogated sensor and the unwanted signal components and can be greatly reduced by suppressing this interference signal. The unwanted signal components may include overlapping pulses originating from different sets of interrogation pulses (repetition periods). Modulating the phase or frequency between the repetition periods so that the unwanted interference signal does not appear at frequencies from which the phase of the interrogated sensor is demodulated suppresses this interference. Other unwanted signal components include leakage light during dark periods of the duty cycle of an interrogation signal.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: December 16, 2008
    Assignee: Optoplan AS
    Inventors: Ole Henrik Waagaard, Erlend Rønnekleiv
  • Publication number: 20080291461
    Abstract: Unwanted signal components in time-division multiplexed (TDM) systems may lead to crosstalk and noise if these pulses overlap with signal pulses from an interrogated sensor. The crosstalk and noise are dominated by interference between the signal pulses from the interrogated sensor and the unwanted signal components and can be greatly reduced by suppressing this interference signal. The unwanted signal components may include overlapping pulses originating from different sets of interrogation pulses (repetition periods). Modulating the phase or frequency between the repetition periods so that the unwanted interference signal does not appear at frequencies from which the phase of the interrogated sensor is demodulated suppresses this interference. Other unwanted signal components include leakage light during dark periods of the duty cycle of an interrogation signal.
    Type: Application
    Filed: August 7, 2008
    Publication date: November 27, 2008
    Inventors: OLE HENRIK WAAGAARD, Erlend Ronnekleiv
  • Patent number: 7433045
    Abstract: Methods and apparatus reduce coherence of an optical signal that is used to interrogate optical interferometric sensors. The optical field phasor of the interrogation source is modulated in a controlled manner to produce a broadened optical source power spectrum at the output of the source unit. The output from the source unit is launched into an optical sensor network, comprising a multiple of optical pathways from its input to the detection unit, where pairs of optical pathways form sensor interferometers. A compensating interferometer with delay difference similar to the sensor delay difference may be arranged in a serially coupled manner with the optical sensor network, either before or after the network. The coherence modulation may be performed through direct modulation of the source or through external modulation of the light with piezoelectric ring modulator, a Lithium niobate phase or intensity modulator, or an acoustooptic modulator.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: October 7, 2008
    Assignee: Optoplan AS
    Inventors: Erlend Ronnekleiv, Ole Henrik Waagaard, Kjell Blotekjaer, Dag Thingbo, Sigurd Lovseth, Sverre Kundsen
  • Publication number: 20080123467
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 29, 2008
    Inventors: Erlend Ronnekleiv, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg
  • Publication number: 20080112268
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: ERLEND RONNEKLEIV, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg
  • Publication number: 20080112264
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: ERLEND RONNEKLEIV, Ole Henrik Waagaard, Hilde Nakstad, Ame Berg
  • Publication number: 20080112261
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: ERLEND RONNEKLEIV, OLE HENRIK WAAGAARD, HILDE NAKSTAD, ARNE BERG
  • Publication number: 20080112260
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: ERLEND RONNEKLEIV, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg
  • Publication number: 20080112267
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: Erlend Ronnekleiv, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg
  • Publication number: 20080101157
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 1, 2008
    Inventors: ERLEND RONNEKLEIV, Ole Waagaard, Hilde Nakstad, Arne Berg
  • Patent number: 7366055
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: April 29, 2008
    Assignee: Optoplan AS
    Inventors: Erlend Rønnekleiv, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg
  • Patent number: 7359061
    Abstract: A method and apparatus that uses specific source modulation and detectors to detect a response that carries information about a system response matrix associated with each sensor in a interferometric sensor array and extracting a sensor response in a manner that eliminates polarization-induced signal fading and that is insensitive to lead fiber birefringence fluctuations.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: April 15, 2008
    Assignee: Optoplan AS
    Inventors: Ole Henrik Waagaard, Erlend Rønnekleiv
  • Patent number: 7336365
    Abstract: Unwanted signal components in time-division multiplexed (TDM) systems may lead to crosstalk and noise if these pulses overlap with signal pulses from an interrogated sensor. The crosstalk and noise are dominated by interference between the signal pulses from the interrogated sensor and the unwanted signal components and can be greatly reduced by suppressing this interference signal. The unwanted signal components may include overlapping pulses originating from different sets of interrogation pulses (repetition periods). Modulating the phase or frequency between the repetition periods so that the unwanted interference signal does not appear at frequencies from which the phase of the interrogated sensor is demodulated suppresses this interference. Other unwanted signal components include leakage light during dark periods of the duty cycle of an interrogation signal.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: February 26, 2008
    Assignee: Optoplan AS
    Inventors: Ole Henrik Waagaard, Erlend Rønnekleiv
  • Publication number: 20080018905
    Abstract: Unwanted signal components in time-division multiplexed (TDM) systems may lead to crosstalk and noise if these pulses overlap with signal pulses from an interrogated sensor. The crosstalk and noise are dominated by interference between the signal pulses from the interrogated sensor and the unwanted signal components and can be greatly reduced by suppressing this interference signal. The unwanted signal components may include overlapping pulses originating from different sets of interrogation pulses (repetition periods). Modulating the phase or frequency between the repetition periods so that the unwanted interference signal does not appear at frequencies from which the phase of the interrogated sensor is demodulated suppresses this interference. Other unwanted signal components include leakage light during dark periods of the duty cycle of an interrogation signal.
    Type: Application
    Filed: October 2, 2007
    Publication date: January 24, 2008
    Inventors: OLE WAAGAARD, Erlend Ronnekleiv
  • Publication number: 20080018904
    Abstract: Unwanted signal components in time-division multiplexed (TDM) systems may lead to crosstalk and noise if these pulses overlap with signal pulses from an interrogated sensor. The crosstalk and noise are dominated by interference between the signal pulses from the interrogated sensor and the unwanted signal components and can be greatly reduced by suppressing this interference signal. The unwanted signal components may include overlapping pulses originating from different sets of interrogation pulses (repetition periods). Modulating the phase or frequency between the repetition periods so that the unwanted interference signal does not appear at frequencies from which the phase of the interrogated sensor is demodulated suppresses this interference. Other unwanted signal components include leakage light during dark periods of the duty cycle of an interrogation signal.
    Type: Application
    Filed: October 2, 2007
    Publication date: January 24, 2008
    Inventors: OLE WAAGAARD, Erlend Ronnekleiv
  • Publication number: 20070258319
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: May 5, 2006
    Publication date: November 8, 2007
    Inventors: Erlend Ronnekleiv, Ole Waagaard, Hilde Nakstad, Arne Berg
  • Publication number: 20070258330
    Abstract: A seismic sensor station includes a housing containing a fiber optic hydrophone and a fiber optic accelerometer that can both be made from a single length of optical fiber arranged inside the housing. The fiber optic accelerometer is arranged in a liquid/oil filled compartment of the housing for dampening of mechanical resonances in the accelerometer due to mechanical disturbances and pressure fluctuations.
    Type: Application
    Filed: May 5, 2006
    Publication date: November 8, 2007
    Inventors: Arne Berg, Erlend Ronnekleiv, Ole Waagaard, Jon Kringlebotn, Hilde Nakstad, Roar Furuhaug
  • Patent number: 7245382
    Abstract: Embodiments of the present invention generally provide methods, apparatus, and systems for compensating for frequency fluctuations in source light used to interrogate an optical sensor. The optical sensor may be interrogated to generate a sensor signal. A reference device co-located with the optical sensor may also be interrogated to generate a reference signal. Optical parameters extracted from the reference signal may be used to correct parameters extracted from a sensor signal.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: July 17, 2007
    Assignee: Optoplan AS
    Inventor: Erlend Ronnekleiv
  • Publication number: 20070019201
    Abstract: A method and apparatus that uses specific source modulation and detectors to detect a response that carries information about a system response matrix associated with each sensor in a interferometric sensor array and extracting a sensor response in a manner that eliminates polarization-induced signal fading and that is insensitive to lead fiber birefringence fluctuations.
    Type: Application
    Filed: July 25, 2006
    Publication date: January 25, 2007
    Inventors: Ole Waagaard, Erlend Ronnekleiv