Patents by Inventor Erman Timurdogan

Erman Timurdogan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960192
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: April 16, 2024
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11953678
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for aberration correction of optical phased arrays that employ a corrective optical path difference (OPD) in the near-field of an OPA to correct or cancel out aberrations in emitted beams of the OPA including those reaching far-field distances by generating a spatially-varying OPD across the aperture of the OPA that is substantially equal and opposite to an equivalent OPD of the aberration(s).
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 9, 2024
    Assignee: Analog Photonics LLC
    Inventors: Peter Nicholas Russo, Ehsan Shah Hosseini, Christopher Vincent Poulton, Erman Timurdogan, Diedrik Vermeulen, Michael Robert Watts, Michael J. Whitson
  • Patent number: 11809058
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: November 7, 2023
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20230324616
    Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral respon
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Inventors: Zhan Su, Erman Timurdogan
  • Patent number: 11768418
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: September 26, 2023
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11714238
    Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral respon
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: August 1, 2023
    Assignee: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan
  • Publication number: 20230058824
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 23, 2023
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11526063
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: December 13, 2022
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20220334313
    Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Applicant: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
  • Publication number: 20220262962
    Abstract: An optoelectronic module. In some embodiments, the optoelectronic module includes a substrate; a digital integrated circuit, on an upper surface of the substrate; a photonic integrated circuit, secured in a pocket of the substrate, the pocket being in the upper surface of the substrate; and an analog integrated circuit, on the photonic integrated circuit.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 18, 2022
    Inventors: Gerald Cois BYRD, Thomas Pierre SCHRANS, Chia-Te CHOU, Arin ABED, Omar James BCHIR, Erman TIMURDOGAN, Aaron John ZILKIE
  • Patent number: 11409044
    Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: August 9, 2022
    Assignee: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
  • Publication number: 20220137299
    Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral respon
    Type: Application
    Filed: January 6, 2022
    Publication date: May 5, 2022
    Inventors: Zhan Su, Erman Timurdogan
  • Patent number: 11269236
    Abstract: Aspects of the present disclosure describe optical structures and devices, and more particularly to improved, tunable optical structures including optical gratings that are dynamically affected and/or tuned by acousto-optic or electro-optic mechanisms.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Analog Photonics LLC
    Inventors: Erman Timurdogan, Ehsan Shah Hosseini, Michael Robert Watts, Michael J. Whitson
  • Patent number: 11249254
    Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral respon
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: February 15, 2022
    Assignee: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan
  • Publication number: 20210356835
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Applicant: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20210341675
    Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 4, 2021
    Applicant: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
  • Publication number: 20210333682
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: July 8, 2021
    Publication date: October 28, 2021
    Applicant: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20210278707
    Abstract: Controlling an optical phased array includes applying optical phase shifts by an array of phase shifter (PS) elements, each PS element applying an optical phase shift based on an input voltage signal applied across first and second terminals of the PS element, providing output voltage signals from an array of driver elements. During a charging time period, each driver element provides an output voltage signal to determine a corresponding input voltage signal applied across at least one of the PS elements; an array of switches control connectivity between the driver elements and respective PS elements; and all of the second terminals of all of the PS elements in the array of PS elements are maintained at a common voltage. The total number of switches in the array of switches is at least as large as the total number of PS elements in the array of PS elements.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 9, 2021
    Inventors: Benjamin Roy Moss, Erman Timurdogan, Christopher Vincent Poulton, Shahriar Shahramian
  • Patent number: 11079654
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 3, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11079653
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 3, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan