Patents by Inventor Erman Timurdogan
Erman Timurdogan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12072531Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.Type: GrantFiled: June 29, 2022Date of Patent: August 27, 2024Assignee: Analog Photonics LLCInventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
-
Patent number: 12055798Abstract: Controlling an optical phased array includes applying optical phase shifts by an array of phase shifter (PS) elements, each PS element applying an optical phase shift based on an input voltage signal applied across first and second terminals of the PS element, providing output voltage signals from an array of driver elements. During a charging time period, each driver element provides an output voltage signal to determine a corresponding input voltage signal applied across at least one of the PS elements; an array of switches control connectivity between the driver elements and respective PS elements; and all of the second terminals of all of the PS elements in the array of PS elements are maintained at a common voltage. The total number of switches in the array of switches is at least as large as the total number of PS elements in the array of PS elements.Type: GrantFiled: March 4, 2021Date of Patent: August 6, 2024Assignee: Analog Photonics LLCInventors: Benjamin Roy Moss, Erman Timurdogan, Christopher Vincent Poulton, Shahriar Shahramian
-
Publication number: 20240231082Abstract: Aspects of the present disclosure describe systems, methods, and structures for aberration correction of optical phased arrays that employ a corrective optical path difference (OPD) in the near-field of an OPA to correct or cancel out aberrations in emitted beams of the OPA including those reaching far-field distances by generating a spatially-varying OPD across the aperture of the OPA that is substantially equal and opposite to an equivalent OPD of the aberration(s).Type: ApplicationFiled: March 25, 2024Publication date: July 11, 2024Applicant: Analog Photonics LLCInventors: Peter Nicholas Russo, Ehsan Shah Hosseini, Christopher Vincent Poulton, Erman Timurdogan, Diedrik Vermeulen, Michael Robert Watts, Michael J. Whitson
-
Publication number: 20240195510Abstract: An optical system may include a laser source including a laser source output port; an electro-optic (EO) transmitter (Tx) including a Tx input port and a Tx output port; a first polarization splitter rotator (PSR) including a first port, a second port, and a third port; a second PSR including a fourth port, a fifth port, and a sixth port; and a polarization maintaining medium on an optical path between the second port and the fifth port. The laser source output port may be optically terminated at the first port. The second port may be optically terminated at the fifth port. The third port may be optically terminated at an output of the optical system. The Tx output port may be optically terminated at the fourth port. The fifth port may be optically terminated at the second port. The sixth port may be optically terminated at the Tx input port.Type: ApplicationFiled: March 31, 2023Publication date: June 13, 2024Inventor: Erman TIMURDOGAN
-
Patent number: 11960192Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.Type: GrantFiled: October 31, 2022Date of Patent: April 16, 2024Assignee: Analog Photonics LLCInventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
-
Patent number: 11953678Abstract: Aspects of the present disclosure describe systems, methods, and structures for aberration correction of optical phased arrays that employ a corrective optical path difference (OPD) in the near-field of an OPA to correct or cancel out aberrations in emitted beams of the OPA including those reaching far-field distances by generating a spatially-varying OPD across the aperture of the OPA that is substantially equal and opposite to an equivalent OPD of the aberration(s).Type: GrantFiled: March 16, 2021Date of Patent: April 9, 2024Assignee: Analog Photonics LLCInventors: Peter Nicholas Russo, Ehsan Shah Hosseini, Christopher Vincent Poulton, Erman Timurdogan, Diedrik Vermeulen, Michael Robert Watts, Michael J. Whitson
-
Patent number: 11809058Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.Type: GrantFiled: July 8, 2021Date of Patent: November 7, 2023Assignee: Analog Photonics LLCInventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
-
Publication number: 20230324616Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral responType: ApplicationFiled: June 14, 2023Publication date: October 12, 2023Inventors: Zhan Su, Erman Timurdogan
-
Patent number: 11768418Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.Type: GrantFiled: July 29, 2021Date of Patent: September 26, 2023Assignee: Analog Photonics LLCInventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
-
Patent number: 11714238Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral responType: GrantFiled: January 6, 2022Date of Patent: August 1, 2023Assignee: Analog Photonics LLCInventors: Zhan Su, Erman Timurdogan
-
Publication number: 20230058824Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.Type: ApplicationFiled: October 31, 2022Publication date: February 23, 2023Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
-
Patent number: 11526063Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.Type: GrantFiled: September 28, 2020Date of Patent: December 13, 2022Assignee: Analog Photonics LLCInventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
-
Publication number: 20220334313Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.Type: ApplicationFiled: June 29, 2022Publication date: October 20, 2022Applicant: Analog Photonics LLCInventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
-
Publication number: 20220262962Abstract: An optoelectronic module. In some embodiments, the optoelectronic module includes a substrate; a digital integrated circuit, on an upper surface of the substrate; a photonic integrated circuit, secured in a pocket of the substrate, the pocket being in the upper surface of the substrate; and an analog integrated circuit, on the photonic integrated circuit.Type: ApplicationFiled: April 28, 2022Publication date: August 18, 2022Inventors: Gerald Cois BYRD, Thomas Pierre SCHRANS, Chia-Te CHOU, Arin ABED, Omar James BCHIR, Erman TIMURDOGAN, Aaron John ZILKIE
-
Patent number: 11409044Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.Type: GrantFiled: April 30, 2021Date of Patent: August 9, 2022Assignee: Analog Photonics LLCInventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
-
Publication number: 20220137299Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral responType: ApplicationFiled: January 6, 2022Publication date: May 5, 2022Inventors: Zhan Su, Erman Timurdogan
-
Patent number: 11269236Abstract: Aspects of the present disclosure describe optical structures and devices, and more particularly to improved, tunable optical structures including optical gratings that are dynamically affected and/or tuned by acousto-optic or electro-optic mechanisms.Type: GrantFiled: May 29, 2020Date of Patent: March 8, 2022Assignee: Analog Photonics LLCInventors: Erman Timurdogan, Ehsan Shah Hosseini, Michael Robert Watts, Michael J. Whitson
-
Patent number: 11249254Abstract: A wavelength division multiplexing filter comprises: a first multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers, and a second multi-order Mach-Zehnder interferometer comprising a plurality of first-order Mach-Zehnder interferometers; wherein the first multi-order Mach-Zehnder interferometer and the second multi-order Mach-Zehnder interferometer are included in a group of multiple multi-order Mach-Zehnder interferometers arranged within a binary tree arrangement, the binary tree arrangement comprising: a first set of a plurality of multi-order Mach-Zehnder interferometers, the first set including the first multi-order Mach-Zehnder interferometer, and having an associated spectral response with a first spacing between adjacent passbands, and a second set of at least twice as many multi-order Mach-Zehnder interferometers as in the first set, the second set including the second multi-order Mach-Zehnder interferometer, and having an associated spectral responType: GrantFiled: April 8, 2020Date of Patent: February 15, 2022Assignee: Analog Photonics LLCInventors: Zhan Su, Erman Timurdogan
-
Publication number: 20210356835Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.Type: ApplicationFiled: July 29, 2021Publication date: November 18, 2021Applicant: Analog Photonics LLCInventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
-
Publication number: 20210341675Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.Type: ApplicationFiled: April 30, 2021Publication date: November 4, 2021Applicant: Analog Photonics LLCInventors: Zhan Su, Erman Timurdogan, Michael Robert Watts