Patents by Inventor Ermin Esch

Ermin Esch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9863781
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: January 9, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Wolfram Bauer, Johannes Classen, Rainer Willig, Matthias Meier, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Hans-Dieter Schwarz, Michael Veith, Christoph Lang, Udo-Martin Gomez
  • Publication number: 20150121990
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Application
    Filed: November 13, 2014
    Publication date: May 7, 2015
    Inventors: Wolfram BAUER, Johannes CLASSEN, Rainer WILLIG, Matthias MEIER, Burkhard KUHLMANN, Mathias REIMANN, Ermin ESCH, Hans-Dieter SCHWARZ, Michael VEITH, Christoph LANG, Udo-Martin GOMEZ
  • Patent number: 8938364
    Abstract: A sensor device includes: a sensor module mounted on a conductor board; a sensitive element which is sensitive to a variable; a self-test control unit implementing a self-test program, the self-test control unit applying a self-test variable to the sensitive element, taking the self-test program into account; a detection unit detecting a characteristic of the sensitive element which is altered as a result of the applied self-test variable and providing an actual self-test response, taking the altered characteristic into account; and a comparator unit provided on or in the sensor module, the comparator unit comparing the actual self-test response to at least one specified setpoint self-test response and providing comparative information.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: January 20, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Patrick Goerlich, Riad Stefo, Wolfram Bauer, Rainer Willig, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Michael Baus, Gregor Wetekam, Michael Veith, Emma Abel, Wolfgang Fuerst
  • Patent number: 8910518
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Wolfram Bauer, Johannes Classen, Rainer Willig, Matthias Meier, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Hans-Dieter Schwarz, Michael Veith, Christoph Lang, Udo-Martin Gomez
  • Patent number: 8516174
    Abstract: A method for transmitting data frames between a master device and one or more slave devices via a bus system having at least one request line for transmitting request data frames from the master device to the slave devices, a response line for transmitting response data frames from the slave devices to the master device and at least one selection line for activating the slave devices, the request data frames and the response data frames being transmitted together with at least one address bit for addressing one of the slave devices, the useful data bits and at least one length-indicating bit for indicating the data frame length.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 20, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Patrick Goerlich, Sabine Seemann, Ermin Esch
  • Publication number: 20120186345
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Application
    Filed: April 6, 2010
    Publication date: July 26, 2012
    Inventors: Wolfram Bauer, Johannes Classen, Rainer Willig, Matthias Meier, Burkhard Kuhlmann, Matthias Mathias Reimann, Ermin Esch, Hans-Dieter Schwarz, Michael Veith, Christoph Lang, Udo-Martin Gomez
  • Publication number: 20110066396
    Abstract: A sensor device includes: a sensor module mounted on a conductor board; a sensitive element which is sensitive to a variable; a self-test control unit implementing a self-test program, the self-test control unit applying a self-test variable to the sensitive element, taking the self-test program into account; a detection unit detecting a characteristic of the sensitive element which is altered as a result of the applied self-test variable and providing an actual self-test response, taking the altered characteristic into account; and a comparator unit provided on or in the sensor module, the comparator unit comparing the actual self-test response to at least one specified setpoint self-test response and providing comparative information.
    Type: Application
    Filed: July 9, 2010
    Publication date: March 17, 2011
    Inventors: Patrick Goerlich, Riad Stefo, Wolfram Bauer, Rainer Willig, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Michael Baus, Gregor Wetekam, Michael Veith, Emma Abel, Wolfgang Fuerst
  • Patent number: 7839227
    Abstract: An oscillating circuit includes an analog oscillation element. The oscillating circuit includes at least one analog-to-digital conversion device. A method is for operating an oscillating circuit, in which a mechanical oscillator oscillates at a natural frequency. The oscillation amplitude is measured and digitized. A digital control signal is generated from this with the aid of a digital amplitude controller. A driving signal is generated, in turn, from the digital control signal, the driving signal driving the mechanical oscillator with the aid of a drive unit. This control loop stabilizes the oscillation amplitude.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: November 23, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Hans-Dieter Schwarz, Arnd Gangei, Wolfram Bauer, Gerhard Wucher, Christoph Lang, Ermin Esch, Michael Veith, Thomas Mayer, Markus Brockmann
  • Publication number: 20100138576
    Abstract: A method for transmitting data frames between a master device and one or more slave devices via a bus system having at least one request line for transmitting request data frames from the master device to the slave devices, a response line for transmitting response data frames from the slave devices to the master device and at least one selection line for activating the slave devices, the request data frames and the response data frames being transmitted together with at least one address bit for addressing one of the slave devices, the useful data bits and at least one length-indicating bit for indicating the data frame length.
    Type: Application
    Filed: May 7, 2008
    Publication date: June 3, 2010
    Inventors: Patrick Goerlich, Sabine Seemann, Ermin Esch
  • Publication number: 20080297264
    Abstract: An oscillating circuit includes an analog oscillation element. The oscillating circuit includes at least one analog-to-digital conversion device. A method is for operating an oscillating circuit, in which a mechanical oscillator oscillates at a natural frequency. The oscillation amplitude is measured and digitized. A digital control signal is generated from this with the aid of a digital amplitude controller. A driving signal is generated, in turn, from the digital control signal, the driving signal driving the mechanical oscillator with the aid of a drive unit. This control loop stabilizes the oscillation amplitude.
    Type: Application
    Filed: December 9, 2005
    Publication date: December 4, 2008
    Inventors: Hans-Dieter Schwarz, Arnd Gangei, Wolfram Bauer, Gerhard Wucher, Christoph Lang, Ermin Esch, Michael Veith, Thomas Mayer, Markus Brockmann