Patents by Inventor Ernest F. Hasselbrink

Ernest F. Hasselbrink has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7293449
    Abstract: A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: November 13, 2007
    Assignee: The Regents of the University of Michigan
    Inventors: Ernest F. Hasselbrink, Mark Libardoni, Kristine Stewart, legal representative, J. Hunter Waite, Bruce P. Block, Richard D. Sacks, deceased
  • Patent number: 7284409
    Abstract: A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: October 23, 2007
    Assignee: The Regents of the University of Michigan
    Inventors: Ernest F. Hasselbrink, Mark Libardoni, Kristine Stewart, legal representative, J. Hunter Waite, Bruce P. Block, Richard D. Sacks, deceased
  • Patent number: 6994826
    Abstract: A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: February 7, 2006
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Phillip H. Paul, Don W. Arnold
  • Patent number: 6988402
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 24, 2006
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby
  • Patent number: 6952962
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: October 11, 2005
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby
  • Patent number: 6782746
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: August 31, 2004
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd
  • Publication number: 20020194909
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Application
    Filed: May 8, 2002
    Publication date: December 26, 2002
    Inventors: Ernest F. Hasselbrink, Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby