Patents by Inventor Ernest R. Blatchley, III

Ernest R. Blatchley, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220235246
    Abstract: Methods of enhancing the anti-virus capabilities of surfaces directly contacted by humans. The methods include applying a hydrophobic coating material to a surface of an article to form a hydrophobic surface coating overlying the surface such that the hydrophobic surface coating defines a hydrophobic outer surface of the article. The hydrophobic outer surface is more hydrophobic than the surface of the article, and a liquid that contains suspended viruses and is deposited on the hydrophobic outer surface exhibits a contact angle relative to the hydrophobic outer surface that is greater than a contact angle of the liquid if directly deposited on the surface of the article, and the hydrophobic outer surface thereby increases inactivation of the viruses suspended in the liquid as compared to the surface of the article to which the hydrophobic coating material was applied.
    Type: Application
    Filed: January 27, 2022
    Publication date: July 28, 2022
    Inventors: Tanya Purwar, Victor-Manuel Castano-Meneses, Xing Li, Ernest R. Blatchley, III, Luciano Castillo, Ali Doottalab
  • Patent number: 11084738
    Abstract: Systems and methods for separating organic chloramines and inorganic chloramines from an aqueous solution. Such a method includes providing a first container containing an aqueous solution that includes organic and inorganic chloramines and free chlorine, providing a second container containing a trapping solution and a tubular hydrophobic membrane through which inorganic chloramines contained in the aqueous solution can diffuse into the trapping solution, pumping the aqueous solution from the first container through the tubular hydrophobic membrane of the second container; and collecting the aqueous solution pumped through the tubular hydrophobic membrane in a third container connected to the tubular hydrophobic membrane. After pumping is completed, the second container contains an aqueous solution containing the inorganic chloramines and the third container contains an aqueous solution containing the organic chloramines and the free chlorine.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: August 10, 2021
    Assignee: Purdue Research Foundation
    Inventor: Ernest R. Blatchley, III
  • Publication number: 20200198994
    Abstract: Systems and methods for separating organic chloramines and inorganic chloramines from an aqueous solution. Such a method includes providing a first container containing an aqueous solution that includes organic and inorganic chloramines and free chlorine, providing a second container containing a trapping solution and a tubular hydrophobic membrane through which inorganic chloramines contained in the aqueous solution can diffuse into the trapping solution, pumping the aqueous solution from the first container through the tubular hydrophobic membrane of the second container; and collecting the aqueous solution pumped through the tubular hydrophobic membrane in a third container connected to the tubular hydrophobic membrane. After pumping is completed, the second container contains an aqueous solution containing the inorganic chloramines and the third container contains an aqueous solution containing the organic chloramines and the free chlorine.
    Type: Application
    Filed: September 30, 2019
    Publication date: June 25, 2020
    Inventor: Ernest R. Blatchley, III
  • Patent number: 9546100
    Abstract: Potable drinking water is a scarce resource in many parts of developing countries, especially rural areas. Due to limited financial means of these countries, low cost point-of-use systems are thought to be appropriate technology to treat water. Systems using solar ultraviolet (UV) radiation could be successful since many vulnerable countries are located where solar radiation is intense and abundant throughout the year. The goal of this disclosure is to develop a simple and low cost point-of-use solar UV reactor to disinfect water. In this disclosure wavelength-dependent microbial dose-response behavior was investigated using surrogates to pathogenic microbes. A solar radiation prediction method based on the SMARTS model was used to predict solar UV intensity as function of geographic location and time. A numerical modeling procedure using the discrete ordinate (DO) model and CFD software (FLUENT) was used to simulate UV dose (distribution) delivery to microorganisms.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 17, 2017
    Assignee: Purdue Research Foundation
    Inventors: Ernest R Blatchley, III, Eric Gentil Mbonimpa, Bruce Applegate, Bryan Vadheim
  • Publication number: 20140225002
    Abstract: Potable drinking water is a scarce resource in many parts of developing countries, especially rural areas. Due to limited financial means of these countries, low cost point-of-use systems are thought to be appropriate technology to treat water. Systems using solar ultraviolet (UV) radiation could be successful since many vulnerable countries are located where solar radiation is intense and abundant throughout the year. The goal of this disclosure is to develop a simple and low cost point-of-use solar UV reactor to disinfect water. In this disclosure wavelength-dependent microbial dose-response behavior was investigated using surrogates to pathogenic microbes. A solar radiation prediction method based on the SMARTS model was used to predict solar UV intensity as function of geographic location and time. A numerical modeling procedure using the discrete ordinate (DO) model and CFD software (FLUENT) was used to simulate UV dose (distribution) delivery to microorganisms.
    Type: Application
    Filed: August 29, 2012
    Publication date: August 14, 2014
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Ernest R Blatchley, III, Eric Gentil Mbonimpa, Bruce Applegate, Bryan Vadheim
  • Patent number: 7842512
    Abstract: A method for photochemical reactor characterization includes an application of using dyed microspheres exposed to UV irradiation under a collimated-beam system. Particle specific fluorescence intensity measurements are conducted using samples form the collimated beam and flow-through reactor results using flow cytometry. A numerical model may be used to simulate the behavior of the reactor system to provide a particle-tracking algorithm to interrogate the flow and intensity field simulations for purposes of developing a particle specific estimate of the dose delivery. A method for measuring UV dose distribution delivery in photochemical reactors is provided that includes introducing microspheres labeled with a photochemically-active compound in a UV reactor. The labeled microspheres are harvested downstream of the irradiated zone of a UV reactor and exposed to UV irradiation under a collimated beam of UV irradiation.
    Type: Grant
    Filed: March 26, 2005
    Date of Patent: November 30, 2010
    Assignee: Purdue Research Foundation
    Inventors: Ernest R. Blatchley, III, Chengyue Shen, Zorana Naunovic, Lian-Shin Lin, Dennis A. Lyn, Donald E. Bergstrom, Shiyue Fang, Yousheng Guan, Joseph Paul Robinson, Kathyrn E. Ragheb, Gerald J. Gregori