Patents by Inventor Ernest Y. Wu

Ernest Y. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901002
    Abstract: System and method to localize a position of an RRAM filament of resistive memory device at very low bias voltages using a scanning laser beam. The approach is non-invasive and allows measurement of a large number of devices for creating statistics relating to the filament formation. A laser microscope system is configured to perform a biasing the RRAM cell with voltage (or current). Concurrent to the applied bias, a laser beam is generated and aimed at different positions of the RRAM cell (e.g., by a raster scanning). Changes in the current (or voltage) flowing through the cell are measured. The method creates a map of the current (or voltage) changes at the different laser positions and detects a spot in the map corresponding to higher (or lower) current (or voltage). The method determines the (x,y) position of the spot compared to the edge/center of the RRAM cell.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: February 13, 2024
    Assignee: International Business Machines Corporation
    Inventors: Franco Stellari, Ernest Y. Wu, Takashi Ando, Peilin Song
  • Publication number: 20230420491
    Abstract: Metal-insulator-metal capacitor designs with increased reliability are provided. In one aspect, a capacitor includes: first and second electrodes; and multiple dielectric layers present in between the first and second electrodes, including a first buffer layer disposed on the first electrode, a ferroelectric film disposed on the first buffer layer, and a second buffer layer disposed on the ferroelectric film, where the ferroelectric film includes a combination of at least a first dielectric material and a second dielectric material having a higher ? value than either the first or second buffer layers. The first and second dielectric materials can each include HfO2 and/or ZrO2, in a crystalline phase, which can be combined in a common layer, or present in different layers. A capacitor device having the present capacitors stacked one on top of another is also provided, as is a method of forming the present capacitors.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Kisik Choi, Paul Charles Jamison, Takashi Ando, Lawrence A. Clevenger, Huimei Zhou, Miaomiao Wang, Ernest Y. Wu
  • Publication number: 20230170019
    Abstract: System and method to localize a position of an RRAM filament of resistive memory device at very low bias voltages using a scanning laser beam. The approach is non-invasive and allows measurement of a large number of devices for creating statistics relating to the filament formation. A laser microscope system is configured to perform a biasing the RRAM cell with voltage (or current). Concurrent to the applied bias, a laser beam is generated and aimed at different positions of the RRAM cell (e.g., by a raster scanning). Changes in the current (or voltage) flowing through the cell are measured. The method creates a map of the current (or voltage) changes at the different laser positions and detects a spot in the map corresponding to higher (or lower) current (or voltage). The method determines the (x,y) position of the spot compared to the edge/center of the RRAM cell.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 1, 2023
    Inventors: Franco Stellari, Ernest Y. Wu, Takashi Ando, Peilin Song
  • Patent number: 11489118
    Abstract: A resistive random access memory (RRAM) device and a method for constructing the device is described. A capping layer structure is provided over a bottom contact where the capping layer includes a recess situated over the bottom contact. A first portion of the recess is filled with a lower electrode such that the width of the recess defines the width of the lower electrode. A second portion of the recess is filled with a high-K layer so that a bottom surface of the high-K layer has a stepped profile. A top electrode is formed on the high-K layer and a top contact is formed on the top electrode. The width of the high-K layer is greater than the width of the lower electrode to prevent shorting between the top contact and the lower electrode of the RRAM device.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: November 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Baozhen Li, Chih-Chao Yang, Ernest Y Wu, Andrew Tae Kim
  • Patent number: 11257750
    Abstract: Metal e-fuse structure formed during back-end-of-line during processing and integral with on-chip metal-insulator-metal (MIM) capacitor (MIMcap). The metal e-fuse structures are extensions of MIMcap electrodes and are structured to isolate BEOL MIM capacitors for trimming and/or to isolate shorted or rendered highly leaky due to in process, or service induced defects. In one embodiment, the method incorporates the integral, co-processed metal e-fuse in series between the MIM capacitor and an active circuit. When a high current passes through the e-fuse element, the e-fuse element is rendered highly resistive or electrically open thereby disconnecting the MIM capacitor or electrode plate from the active circuitry. The e-fuse structure may comprise a thin neck portion(s) or zig-zag neck portion that extend from an MIMcap electrode away from the MIMcap between two inter-level interconnect via structures.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: February 22, 2022
    Assignee: International Business Machines Corporation
    Inventors: Baozhen Li, Chih-Chao Yang, Jim Shih-Chun Liang, Ernest Y. Wu
  • Patent number: 11121082
    Abstract: An e-Fuse device including a first electronic feature and a second electronic feature comprised of a conductive material, each of the first electronic feature and the second electronic feature having a width at least as great as a ground rule of a patterning process; and a fuse element comprised of the conductive material having a width less than the ground rule of the patterning process, the fuse element connecting a bottom portion of the first electronic feature and a bottom portion of the second electronic feature. Also disclosed is a method of making the e-Fuse device.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: September 14, 2021
    Assignee: International Business Machines Corporation
    Inventors: Andrew T. Kim, Baozhen Li, Chih-Chao Yang, Ernest Y. Wu
  • Publication number: 20210249348
    Abstract: Metal e-fuse structure formed during back-end-of-line during processing and integral with on-chip metal-insulator-metal (MIM) capacitor (MIMcap). The metal e-fuse structures are extensions of MIMcap electrodes and are structured to isolate BEOL MIM capacitors for trimming and/or to isolate shorted or rendered highly leaky due to in process, or service induced defects. In one embodiment, the method incorporates the integral, co-processed metal e-fuse in series between the MIM capacitor and an active circuit. When a high current passes through the e-fuse element, the e-fuse element is rendered highly resistive or electrically open thereby disconnecting the MIM capacitor or electrode plate from the active circuitry. The e-fuse structure may comprise a thin neck portion(s) or zig-zag neck portion that extend from an MIMcap electrode away from the MIMcap between two inter-level interconnect via structures.
    Type: Application
    Filed: February 6, 2020
    Publication date: August 12, 2021
    Inventors: Baozhen Li, Chih-Chao Yang, JIM SHIH-CHUN LIANG, Ernest Y. Wu
  • Patent number: 11054459
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: July 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 10996259
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 10989754
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Publication number: 20200335440
    Abstract: An e-Fuse device including a first electronic feature and a second electronic feature comprised of a conductive material, each of the first electronic feature and the second electronic feature having a width at least as great as a ground rule of a patterning process; and a fuse element comprised of the conductive material having a width less than the ground rule of the patterning process, the fuse element connecting a bottom portion of the first electronic feature and a bottom portion of the second electronic feature. Also disclosed is a method of making the e-Fuse device.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventors: Andrew T. Kim, Baozhen Li, Chih-Chao Yang, Ernest Y. Wu
  • Patent number: 10811353
    Abstract: A mandrel structure includes a first mandrel, a second mandrel and a third mandrel in a parallel arrangement. The second mandrel is located between the first and third mandrels and has a cut larger than a minimum ground rule feature. A sidewall layer is formed over the mandrel structure. The sidewall layer has two long parallel gaps for two contact lines and a third gap for a fuse element. The third gap is orthogonal to and connects the two long parallel gaps. The sidewall pattern is used to form a trench structure comprising two parallel contact line trenches having a width at least as great as a ground rule of the patterning process for the contact lines and an orthogonal fuse element trench having a width less than the ground rule for the fuse element. A conductive material forms the contact lines and a fuse element.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: October 20, 2020
    Assignee: International Business Machines Corporation
    Inventors: Baozhen Li, Chih-Chao Yang, Andrew Tae Kim, Ernest Y Wu
  • Patent number: 10804368
    Abstract: Techniques for fabricating a semiconductor device having a two-part spacer. In one embodiment, a device is provided that comprises a spacer having a first portion and a second portion, where the first portion comprises one or more layers and the second portion comprises a dielectric material. In one or more implementations, the device further comprises an isolation layer coupled to the spacer, where the isolation layer comprises a silicon oxide material. In one or implementation, the device can further comprise a gate structure formed on a substrate, where the gate structure comprises a polysilicon contact portion, a first silicon dioxide portion, a silicon nitride portion and a second silicon dioxide portion.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 13, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Junli Wang, Dechao Guo, Heng Wu, Ernest Y. Wu
  • Publication number: 20200287136
    Abstract: A resistive random access memory (RRAM) device and a method for constructing the device is described. A capping layer structure is provided over a bottom contact where the capping layer includes a recess situated over the bottom contact. A first portion of the recess is filled with a lower electrode such that the width of the recess defines the width of the lower electrode. A second portion of the recess is filled with a high-K layer so that a bottom surface of the high-K layer has a stepped profile. A top electrode is formed on the high-K layer and a top contact is formed on the top electrode. The width of the high-K layer is greater than the width of the lower electrode to prevent shorting between the top contact and the lower electrode of the RRAM device.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 10, 2020
    Inventors: Baozhen Li, Chih-Chao Yang, Ernest Y Wu, Andrew Tae Kim
  • Patent number: 10770393
    Abstract: Back end of the line precision resistors that allow for high currents and for configuration as an eFuse by embedding a single thin film high resistive metal material within a dielectric layer, wherein the resisters are coupled to sidewalls of adjacent metal interconnects are described. The resistors can be formed in the metal one (M1) dielectric layer and can be coupled to sidewalls of the M1 interconnects. Also described are processes for fabricating integrated circuits including the resistors and/or e-Fuses.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 8, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew Tae Kim, Baozhen Li, Ernest Y. Wu, Chih-Chao Yang
  • Patent number: 10651083
    Abstract: A graded cap is formed upon an interconnect, such as a back end of line wire. The graded cap includes a microstructure that uniformly changes from a metal nearest the interconnect to a metal nitride most distal from the interconnect. The graded cap is formed by nitriding a metal cap that is formed upon the interconnect. During nitriding an exposed one or more perimeter portions of the metal cap become a metal nitride with a larger amount or concentration of Nitrogen while one or more inner portions of the metal cap nearest the interconnect may be maintained as the metal or become the metal nitride with a fewer amount or concentration of Nitrogen. The resulting graded cap includes a gradually or uniformly changing microstructure between the one or more inner portions and the one or more perimeter portions.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Andrew Tae Kim, Baozhen Li, Ernest Y. Wu, Chih-Chao Yang
  • Publication number: 20200141996
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Publication number: 20200126911
    Abstract: A mandrel structure is provided over a dielectric using a patterning process. The mandrel structure includes a first mandrel, a second mandrel and a third mandrel in a parallel arrangement. The second mandrel is located between the first and third mandrels and has a cut larger than a minimum ground rule feature. A sidewall layer is formed over the mandrel structure. The sidewall layer has two long parallel gaps for two contact lines and a third gap for a fuse element. The third gap is orthogonal to and connects the two long parallel gaps. The mandrel structure is removed. The sidewall pattern is used to etch the dielectric to form a trench structure comprising two parallel contact line trenches having a width at least as great as a ground rule of the patterning process for the contact lines and a connecting, orthogonal fuse element trench having a width less than the ground rule for the fuse element. The trenches are filled with conductive material to form the contact lines and a fuse element.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 23, 2020
    Inventors: Baozhen Li, Chih-Chao Yang, Andrew Tae Kim, Ernest Y Wu
  • Publication number: 20200072897
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin
  • Patent number: 10564214
    Abstract: A per-chip equivalent oxide thickness (EOT) circuit sensor resides in an integrated circuit. The per-chip EOT circuit sensor determines electrical characteristics of the integrated circuit. The measured electrical characteristics include leakage current. The determined electrical characteristics are used to determine physical attributes of the integrated circuit. The physical attributes, including EOT, are used in a reliability model to predict per-chip failure rate.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: February 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carole D. Graas, Nazmul Habib, Deborah M. Massey, John G. Massey, Pascal A. Nsame, Ernest Y. Wu, Emmanuel Yashchin