Patents by Inventor Ernst W. Stautner

Ernst W. Stautner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8085047
    Abstract: A system and method for a magnetic resonance (MR) imaging system includes a coil form, at least one magnet positioned about the coil form and configured to generate a magnetic field, at least one gradient coil for manipulating the magnetic field generated by the at least one magnet by way of a gradient field, and a heat pipe thermally connected to the coil form and having a cryogen therein. The MR imaging system also includes a cryocooler connected to the heat pipe to cool the heat pipe and the cryogen, wherein the coil form is comprised of a thermally conductive material in which eddy currents are substantially reduced during operation of the at least one gradient coil. The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: December 27, 2011
    Assignee: General Electric Company
    Inventors: Xianrui Huang, Bulent Aksel, Kathleen M. Amm, Evangelos T. Laskaris, Ernst W. Stautner, Paul S. Thompson, Anbo Wu, Minfeng Xu, Yan Zhao
  • Publication number: 20100277170
    Abstract: A system and method for a magnetic resonance (MR) imaging system includes a coil form, at least one magnet positioned about the coil form and configured to generate a magnetic field, at least one gradient coil for manipulating the magnetic field generated by the at least one magnet by way of a gradient field, and a heat pipe thermally connected to the coil form and having a cryogen therein. The MR imaging system also includes a cryocooler connected to the heat pipe to cool the heat pipe and the cryogen, wherein the coil form is comprised of a thermally conductive material in which eddy currents are substantially reduced during operation of the at least one gradient coil. The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Application
    Filed: November 10, 2008
    Publication date: November 4, 2010
    Inventors: Xianrui Huang, Bulent Aksel, Kathleen M. Amm, Evangelos T. Laskaris, Ernst W. Stautner, Paul S. Thompson, Anbo Wu, Minfeng Xu, Yan Zhao
  • Patent number: 7449889
    Abstract: A system and method for a magnetic resonance (MR) imaging system includes a coil form, at least one magnet positioned about the coil form and configured to generate a magnetic field, at least one gradient coil for manipulating the magnetic field generated by the at least one magnet by way of a gradient field, and a heat pipe thermally connected to the coil form and having a cryogen therein. The MR imaging system also includes a cryocooler connected to the heat pipe to cool the heat pipe and the cryogen, wherein the coil form is comprised of a thermally conductive material in which eddy currents are substantially reduced during operation of the at least one gradient coil. The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: November 11, 2008
    Assignee: General Electric Company
    Inventors: Xianrui Huang, Bulent Aksel, Kathleen M. Amm, Evangelos T. Laskaris, Ernst W. Stautner, Paul S. Thompson, Anbo Wu, Minfeng Xu, Yan Zhao
  • Publication number: 20080240998
    Abstract: A fluid path system includes a vial containing a frozen pharmaceutical product therein. A dissolution fluid path is also included in the fluid path system, the dissolution fluid path having an output end in fluid communication with the vial and an input end attached to a pressure vessel containing a dissolution medium. A delivery fluid path is also included in the system having a first end hermetically attached to the vial to transport therefrom a mixture of dissolved pharmaceutical product and dissolution medium and a second end connected to a receiving vessel to receive the mixture. A dissolution fluid path valve is positioned between the pressure vessel and the dissolution fluid path to control flow of the dissolution medium, and a delivery fluid path valve is also included in the fluid path system to control flow of the mixture from the delivery fluid path to the receiving vessel.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Inventors: John A. Urbahn, Jan Ardenkjaer-Larsen, Andrew M. Leach, Eric Telfeyan, David K. Dietrich, David B. Whitt, Peter Miller, Ernst W. Stautner
  • Publication number: 20080242974
    Abstract: A system for polarizing a material to be used in techniques employing magnetic resonance (MR) is provided. The polarizer system includes a cooling chamber having a cryogenic refrigerant therein for use in polarizing a substance. A sorption pump is connected to the cooling chamber to reduce a pressure therein to allow for hyperpolarizing of the sample. The sorption pump is cooled by a refrigeration system to promote molecular adsorption in the sorption pump. The cooling chamber, sorption pump, and refrigeration system are arranged in a closed system.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Inventors: John A. Urbahn, Jan Ardenkjaer-Larsen, Ernst W. Stautner, Bruce C. Amm, Peter J. Feenan, Roy A. Mangano, David G. Reeves