Patents by Inventor Ervin T. Hill
Ervin T. Hill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230422639Abstract: A semiconductor structure, system and method. The semiconductor structure comprises: a substrate including circuitry therein; and a semiconductor stack on the substrate, the semiconductor stack including: a first electrically conductive layer including a metal and electrically coupled to the circuitry of the substrate; and a second electrically conductive layer between the substrate and the first electrically conductive layer, the second electrically conductive layer including one of a refractory metal, or a combination including silicon, carbon and nitride. The second electrically conductive layer may serve as a barrier layer between the first electrically conductive layer and the material of the underlying substrate, in this manner avoiding the formation of an intermixing region between the metal of the first electrically conductive layer and the material of the substrate during deposition of the metal.Type: ApplicationFiled: June 27, 2022Publication date: December 28, 2023Applicant: Intel CorporationInventors: Shafaat Ahmed, Gowtham Sriram Jawaharram, Cyrus M. Fox, Jose L. Cruz-Campa, Kriti Agarwal, Jian Jiao, Hong Li, Bharat V. Krishnan, Ervin T. Hill, III
-
Publication number: 20210296582Abstract: An oxidation barrier for non-volatile memory with materials sensitive to temperature and/or cross contamination (e.g., chalcogenide materials) are described The barrier can be formed, for example, around the boundaries of a non-volatile memory tile (also known as a block or sub-array). For example, a non-volatile memory device can include an oxidation barrier on a side wall of a trench between adjacent memory tiles.Type: ApplicationFiled: June 7, 2021Publication date: September 23, 2021Inventors: Kevin L. BAKER, Robert K. GRUBBS, Farrell M. GOOD, Ervin T. HILL, Bhumika CHHABRA, Jay S. BROWN
-
Patent number: 11069855Abstract: An oxidation barrier for non-volatile memory with materials sensitive to temperature and/or cross contamination (e.g., chalcogenide materials) are described The barrier can be formed, for example, around the boundaries of a non-volatile memory tile (also known as a block or sub-array). For example, a non-volatile memory device can include an oxidation barrier on a side wall of a trench between adjacent memory tiles.Type: GrantFiled: July 1, 2019Date of Patent: July 20, 2021Assignee: Intel CorporationInventors: Kevin L. Baker, Robert K. Grubbs, Farrell M. Good, Ervin T. Hill, Bhumika Chhabra, Jay S. Brown
-
Publication number: 20210005810Abstract: An oxidation barrier for non-volatile memory with materials sensitive to temperature and/or cross contamination (e.g., chalcogenide materials) are described The barrier can be formed, for example, around the boundaries of a non-volatile memory tile (also known as a block or sub-array). For example, a non-volatile memory device can include an oxidation barrier on a side wall of a trench between adjacent memory tiles.Type: ApplicationFiled: July 1, 2019Publication date: January 7, 2021Inventors: Kevin L. BAKER, Robert K. GRUBBS, Farrell M. GOOD, Ervin T. HILL, Bhumika CHHABRA, Jay S. BROWN
-
Patent number: 10672500Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.Type: GrantFiled: May 22, 2019Date of Patent: June 2, 2020Assignee: Micron Technology, Inc.Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Patent number: 10650891Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.Type: GrantFiled: May 22, 2019Date of Patent: May 12, 2020Assignee: Micron Technology, Inc.Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Publication number: 20190355418Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.Type: ApplicationFiled: May 22, 2019Publication date: November 21, 2019Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Publication number: 20190341122Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.Type: ApplicationFiled: May 22, 2019Publication date: November 7, 2019Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Patent number: 10403359Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.Type: GrantFiled: March 12, 2018Date of Patent: September 3, 2019Assignee: Micron Technology, Inc.Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Patent number: 10381101Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.Type: GrantFiled: December 20, 2017Date of Patent: August 13, 2019Assignee: Micron Technology, Inc.Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Publication number: 20190189237Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.Type: ApplicationFiled: December 20, 2017Publication date: June 20, 2019Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Publication number: 20190189209Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.Type: ApplicationFiled: March 12, 2018Publication date: June 20, 2019Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
-
Patent number: 7943463Abstract: A number of methods are provided for semiconductor processing. One such method includes depositing a first precursor material on a surface at a particular temperature to form an undoped polysilicon. The method also includes depositing a second precursor material on a surface of the undoped polysilicon at substantially the same temperature, wherein the undoped polysilicon serves as a seed to accelerate forming a doped polysilicon.Type: GrantFiled: April 2, 2009Date of Patent: May 17, 2011Assignee: Micron Technology, Inc.Inventors: Anish Khandekar, Ervin T. Hill, Jixin Yu, Jeffrey B. Hull
-
Publication number: 20100255664Abstract: A number of methods are provided for semiconductor processing. One such method includes depositing a first precursor material on a surface at a particular temperature to form an undoped polysilicon. The method also includes depositing a second precursor material on a surface of the undoped polysilicon at substantially the same temperature, wherein the undoped polysilicon serves as a seed to accelerate forming a doped polysilicon.Type: ApplicationFiled: April 2, 2009Publication date: October 7, 2010Applicant: MICRON TECHNOLOGY, INC.Inventors: Anish Khandekar, Ervin T. Hill, Jixin Yu, Jeffrey B. Hull
-
Patent number: 7186614Abstract: A method of forming high performance logic transistors and high density flash transistors on a single substrate is disclosed. In one embodiment, the method comprises: forming a logic gate stack in a logic region on a substrate, forming a flash memory gate stack in a flash region on the substrate, depositing a hardmask layer over the logic gate stack and over the flash memory gate stack, patterning the hardmask in the logic region so that areas of hardmask remain where logic gates are desired, patterning the flash gate stack in the flash region to form flash memory gates, and etching the logic gate stack using the remaining hardmask as a mask to form logic gates.Type: GrantFiled: November 10, 2003Date of Patent: March 6, 2007Assignee: Intel CorporationInventors: Henry S. Chao, Ervin T. Hill
-
Patent number: 7153780Abstract: A method of forming a thin film stack on a substrate, wherein the thin film stack includes at least a polysilicon layer and an oxide layer; forming a hardmask layer on the thin film stack; forming an anti-reflective coating (ARC) layer on the hardmask layer; patterning the ARC layer; etching the hardmask layer using the patterned ARC layer as a mask; and etching the thin film stack using the hardmask layer as a mask.Type: GrantFiled: March 24, 2004Date of Patent: December 26, 2006Assignee: Intel CorporationInventors: Ervin T. Hill, Oleh P. Karpenko, Gordon T. McGarvey, Linda N. Marquez