Patents by Inventor Eseoghene Jeroro

Eseoghene Jeroro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109822
    Abstract: An integrated process for hydrogenating olefins wherein the hydrogen stream is generated from electrolysis of water is described. Water is derived from a first reaction step wherein a first feed stream comprising oxygenated hydrocarbons is reacted to produce a first reacted product stream comprising olefins and a second reacted product stream comprising water. The second reacted product stream is electrolyzed to produce an electrolyzer product stream comprising hydrogen. Hydrogen is used to hydrogenate olefins. A paraffin stream can be obtained from the hydrogenated effluent.
    Type: Application
    Filed: November 29, 2022
    Publication date: April 4, 2024
    Inventors: Manuela Serban, Chunqing Liu, Ashish Mathur, Saikrishna Laxmirajam Gosangari, Charles Luebke, Eseoghene Jeroro, Chad R. Huovie
  • Patent number: 11939283
    Abstract: An integrated process for hydrogenating olefins wherein the hydrogen stream is generated from electrolysis of water is described. Water is derived from a first reaction step wherein a first feed stream comprising oxygenated hydrocarbons is reacted to produce a first reacted product stream comprising olefins and a second reacted product stream comprising water. The second reacted product stream is electrolyzed to produce an electrolyzer product stream comprising hydrogen. Hydrogen is used to hydrogenate olefins. A paraffin stream can be obtained from the hydrogenated effluent.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: March 26, 2024
    Assignee: UOP LLC
    Inventors: Manuela Serban, Chunqing Liu, Ashish Mathur, Saikrishna Laxmirajam Gosangari, Charles Luebke, Eseoghene Jeroro, Chad R. Huovie
  • Publication number: 20240025821
    Abstract: A process for dimerizing and oligomerizing olefins to distillate fuels which manages the dimerization exotherm by diluting it with paraffins which are inert in the dimerization. The olefin stream can also be split and fed to multiple dimerization reactors to further reduce the heat generated. The ethylene feed can also be cooled before entering the dimerization reactor. The paraffins can be obtained from saturating oligomerized effluent.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Inventors: Ashish Mathur, Charles Luebke, Manuela Serban, Den-Yang Jan, Eseoghene Jeroro, Hosoo Lim
  • Publication number: 20230348341
    Abstract: A process for oligomerizing an olefin stream with an oligomerization catalyst to produce an oligomerized olefin stream. Oligomerization may comprise a first stage ethylene oligomerization step followed by a second stage oligomerization of the first stage oligomerized olefin to higher olefins. The oligomerized olefin stream can be separated into jet and diesel fuel streams. The olefin stream may be obtained by converting oxygenates to olefins with an MTO catalyst.
    Type: Application
    Filed: March 28, 2023
    Publication date: November 2, 2023
    Inventors: Deng-Yang Jan, Amanda Hickman, Manuela Serban, Eseoghene Jeroro, Joseph A. Montalbano
  • Patent number: 11529615
    Abstract: A modified UZM-14 zeolite is described. The modified UZM-14 zeolite has a Modification Factor of 6 or more. The modified UZM-14 zeolite may have one or more of: a Si/Al2 ratio of 14 to 30; a total pore volume in a range of 0.5 to 1.0 cc/g; at least 5% of a total pore volume being mesopores having a diameter of 10 nm of less; a cumulative pore volume of micropores and mesopores having a diameter of 100 ? or less of 0.25 cc/g or more; or a Collidine IR Bronsted acid site distribution greater than or equal to an area of 3/mg for a peak in a range of 1575 to 1700 cm?1 after desorption at 150° C. Processes of making the modified UZM-14 zeolite and transalkylation processes using the modified UZM-14 zeolite are also described.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: December 20, 2022
    Assignee: UOP LLC
    Inventors: Martha Leigh Abrams, Eseoghene Jeroro, Jaime G. Moscoso, Deng-Yang Jan, Pelin Cox
  • Patent number: 11103859
    Abstract: A catalyst suitable for the conversion of aromatic hydrocarbons is described. The catalyst comprises UZM-54 zeolite; a mordenite zeolite; a binder comprising alumina, silica, or combinations, thereof; and a metal selected from one or more of: Groups VIB(6) VIIB(7), VIII(8-10) and IVA(14) of the Periodic Table. A process for transalkylation using the catalyst is also described.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 31, 2021
    Assignee: UOP LLC
    Inventors: Eseoghene Jeroro, Deng-Yang Jan, Pelin Cox, Jaime G. Moscoso, Martha Leigh Abrams
  • Publication number: 20210205795
    Abstract: A catalyst suitable for the conversion of aromatic hydrocarbons is described. The catalyst comprises UZM-54 zeolite; a mordenite zeolite; a binder comprising alumina, silica, or combinations, thereof; and a metal selected from one or more of: Groups VIB(6) VIIB(7), VIII(8-10) and IVA(14) of the Periodic Table. A process for transalkylation using the catalyst is also described.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 8, 2021
    Inventors: Eseoghene Jeroro, Deng-Yang Jan, Pelin Cox, Jaime G. Moscoso, Martha Leigh Abrams
  • Publication number: 20210187486
    Abstract: A modified UZM-14 zeolite is described. The modified UZM-14 zeolite has a Modification Factor of 6 or more. The modified UZM-14 zeolite may have one or more of: a Si/Al2 ratio of 14 to 30; a total pore volume in a range of 0.5 to 1.0 cc/g; at least 5% of a total pore volume being mesopores having a diameter of 10 nm of less; a cumulative pore volume of micropores and mesopores having a diameter of 100 ? or less of 0.25 cc/g or more; or a Collidine IR Bronsted acid site distribution greater than or equal to an area of 3/mg for a peak in a range of 1575 to 1700 cm?1 after desorption at 150° C. Processes of making the modified UZM-14 zeolite and transalkylation processes using the modified UZM-14 zeolite are also described.
    Type: Application
    Filed: March 9, 2021
    Publication date: June 24, 2021
    Inventors: Martha Leigh Abrams, Eseoghene Jeroro, Jaime G. Moscoso, Deng-Yang Jan, Pelin Cox
  • Patent number: 10994266
    Abstract: A modified UZM-14 zeolite is described. The modified UZM-14 zeolite has a Modification Factor of 6 or more. The modified UZM-14 zeolite may have one or more of: a Si/Al2 ratio of 14 to 30; a total pore volume in a range of 0.5 to 1.0 cc/g; at least 5% of a total pore volume being mesopores having a diameter of 10 nm of less; a cumulative pore volume of micropores and mesopores having a diameter of 100 ? or less of 0.25 cc/g or more; or a Collidine IR Bronsted acid site distribution greater than or equal to an area of 3/mg for a peak in a range of 1575 to 1700 cm?1 after desorption at 150° C. Processes of making the modified UZM-14 zeolite and transalkylation processes using the modified UZM-14 zeolite are also described.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 4, 2021
    Assignee: UOP LLC
    Inventors: Martha Leigh Abrams, Eseoghene Jeroro, Jaime G. Moscoso, Deng-Yang Jan, Pelin Cox
  • Publication number: 20200368733
    Abstract: A modified UZM-14 zeolite is described. The modified UZM-14 zeolite has a Modification Factor of 6 or more. The modified UZM-14 zeolite may have one or more of: a Si/Al2 ratio of 14 to 30; a total pore volume in a range of 0.5 to 1.0 cc/g; at least 5% of a total pore volume being mesopores having a diameter of 10 nm of less; a cumulative pore volume of micropores and mesopores having a diameter of 100 ? or less of 0.25 cc/g or more; or a Collidine IR Bronsted acid site distribution greater than or equal to an area of 3/mg for a peak in a range of 1575 to 1700 cm?1 after desorption at 150° C. Processes of making the modified UZM-14 zeolite and transalkylation processes using the modified UZM-14 zeolite are also described.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Inventors: Martha Leigh Abrams, Eseoghene Jeroro, Jaime G. Moscoso, Deng-Yang Jan, Pelin Cox