Patents by Inventor Esha D. Nerurkar

Esha D. Nerurkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10203209
    Abstract: A method includes: receiving, with a computing platform, respective trajectory data and map data independently generated by each of a plurality of vision-aided inertial navigation devices (VINS devices) traversing an environment, wherein the trajectory data specifies poses along a path through the environment for the respective VINS device and the map data specifies positions of observed features within the environment as determined by an estimator executed by the respective VINS device; determining, with the computing platform and based on the respective trajectory data and map data from each of the VINS devices, estimates for relative poses within the environment by determining transformations that geometrically relate the trajectory data and the map data between one or more pairs of the VINS devices; and generating, with the computing platform and based on the transformations, a composite map specifying positions within the environment for the features observed by the VINS devices.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: February 12, 2019
    Assignee: Regents of the University of Minnesota
    Inventors: Stergios I. Roumeliotis, Esha D. Nerurkar, Joel Hesch, Chao Guo, Ryan C. DuToit, Kourosh Sartipi, Georgios Georgiou
  • Patent number: 9996941
    Abstract: Estimation techniques for vision-aided inertial navigation are described. In one example, a vision-aided inertial navigation system (VINS) comprises an image source to produce image data for a keyframe and one or more non-keyframes along a trajectory, the one or more non-keyframes preceding the keyframe along the trajectory. The VINS comprises an inertial measurement unit (IMU) to produce IMU data indicative of a motion of the VINS along the trajectory for the keyframe and the one or more non-keyframes, and a processing unit comprising an estimator that processes the IMU data and the image data to compute state estimates of the VINS. The estimator computes the state estimates of the VINS for the keyframe by constraining the state estimates based on the IMU data and the image data for the one or more non-keyframes of the VINS without computing state estimates of the VINS for the one or more non-keyframes.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: June 12, 2018
    Assignee: Regents of the University of Minnesota
    Inventors: Stergios I. Roumeliotis, Esha D. Nerurkar
  • Publication number: 20170343356
    Abstract: A method includes: receiving, with a computing platform, respective trajectory data and map data independently generated by each of a plurality of vision-aided inertial navigation devices (VINS devices) traversing an environment, wherein the trajectory data specifies poses along a path through the environment for the respective VINS device and the map data specifies positions of observed features within the environment as determined by an estimator executed by the respective VINS device; determining, with the computing platform and based on the respective trajectory data and map data from each of the VINS devices, estimates for relative poses within the environment by determining transformations that geometrically relate the trajectory data and the map data between one or more pairs of the VINS devices; and generating, with the computing platform and based on the transformations, a composite map specifying positions within the environment for the features observed by the VINS devices.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 30, 2017
    Inventors: Stergios I. Roumeliotis, Esha D. Nerurkar, Joel Hesch, Chao Guo, Ryan C. DuToit, Kourosh Sartipi, Georgios Georgiou
  • Publication number: 20170294023
    Abstract: Estimation techniques for vision-aided inertial navigation are described. In one example, a vision-aided inertial navigation system (VINS) comprises an image source to produce image data for a keyframe and one or more non-keyframes along a trajectory, the one or more non-keyframes preceding the keyframe along the trajectory. The VINS comprises an inertial measurement unit (IMU) to produce IMU data indicative of a motion of the VINS along the trajectory for the keyframe and the one or more non-keyframes, and a processing unit comprising an estimator that processes the IMU data and the image data to compute state estimates of the VINS. The estimator computes the state estimates of the VINS for the keyframe by constraining the state estimates based on the IMU data and the image data for the one or more non-keyframes of the VINS without computing state estimates of the VINS for the one or more non-keyframes.
    Type: Application
    Filed: March 27, 2017
    Publication date: October 12, 2017
    Inventors: Stergios I. Roumeliotis, Esha D. Nerurkar
  • Patent number: 9607401
    Abstract: Estimation techniques for vision-aided inertial navigation are described. In one example, a vision-aided inertial navigation system (VINS) comprises an image source to produce image data for a keyframe and one or more non-keyframes along a trajectory, the one or more non-keyframes preceding the keyframe along the trajectory. The VINS comprises an inertial measurement unit (IMU) to produce IMU data indicative of a motion of the VINS along the trajectory for the keyframe and the one or more non-keyframes, and a processing unit comprising an estimator that processes the IMU data and the image data to compute state estimates of the VINS. The estimator computes the state estimates of the VINS for the keyframe by constraining the state estimates based on the IMU data and the image data for the one or more non-keyframes of the VINS without computing state estimates of the VINS for the one or more non-keyframes.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: March 28, 2017
    Assignee: Regents of the University of Minnesota
    Inventors: Stergios I. Roumeliotis, Esha D. Nerurkar
  • Publication number: 20140333741
    Abstract: Estimation techniques for vision-aided inertial navigation are described. In one example, a vision-aided inertial navigation system (VINS) comprises an image source to produce image data for a keyframe and one or more non-keyframes along a trajectory, the one or more non-keyframes preceding the keyframe along the trajectory. The VINS comprises an inertial measurement unit (IMU) to produce IMU data indicative of a motion of the VINS along the trajectory for the keyframe and the one or more non-keyframes, and a processing unit comprising an estimator that processes the IMU data and the image data to compute state estimates of the VINS. The estimator computes the state estimates of the VINS for the keyframe by constraining the state estimates based on the IMU data and the image data for the one or more non-keyframes of the VINS without computing state estimates of the VINS for the one or more non-keyframes.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 13, 2014
    Applicant: Regents of the University of Minnesota
    Inventors: Stergios I. Roumeliotis, Esha D. Nerurkar